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ABSTRACT

This thesis investigates the design of a digital fiber-optic interferometric
demodulator based upon a passive symmetric combination of signals produced by
an interferometer terminated with a 3x3 optical coupler. The demodulator was
implemented using a digital signal processing (DSP) board based upon a
TMS320C31 DSP processor. The demodulator was tested using signals produced
by a set of intereferometric simulators which used an analog AD639 trigonometric
chip. A goal of this thesis was to demonstrate an improved noise floor at low

frequencies as compared with a similar analog implementation.
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I. INTRODUCTION

A. MOTIVATION

The motivation for this work is in support of the fiber optic hydrophone research
being conducted at the Naval Postgraduate School. Push-pull fiber-optic hydrophones
that have been designed and built by Garrett, Brown and associates at the Naval
Postgraduate School offer very large acoustic sensitivities [Refs 1, 2, 3, 4 and 5]. This has
offered the potential to develop acoustic sensor systems with wide dynamic ranges and
high sensitivity. ~ Various demodulation schemes are feasible for use with these
interferometric sensors [Ref 6]. In particular, Cameron [Ref 7], has demonstrated an
approach which terminates a Mach-Zehnder interferometer with a 3x3 optical coupler as
shown in Figure 1.1. By using all three optical outputs and a passive symmetric
demodulation scheme developed at the Naval Postgraduate School, he demonstrated
superior results over other passive homodyne implementations. The algorithm is shown in
block diagram form in Figure 1.2, below. Cameron constructed an interferometric
demodulator based on the passive symmetric algorithm using analog electronics. With
such, he was able to achieve a dynamic range of 115 dB @ 600 Hz in a one Hertz
bandwidth with no more than 4% Total Harmonic Distortion (THD) [Ref 7:p 252]. The
- minimum detectable signal at that same frequency was 220 pradians/NHz. Also Brown, et
al., [Ref 8] quote corhparable performance using a similar analog symmetric demodulator.
They also note that both the minimum detectable signal (noise floor) and maximum

tolerable signal increase as the acoustic frequency decreases.

At low frequencies, the analog electronic version of the symmetric demodulator
suffered from excessive noise. When comparing the relative importance of noise
contributions from various stages of a circuit, it is advantageous to refer the noise to a
common spot in the circuit, for instance the input. This is done by dividing the noise
injected at a stage by the accumulated gain of all the previous stages. The excessive low
frequency noise was a consequence of the analog multiplier stage which follows the
differentiators (refer ahead to Figure 1.2). A differentiator has gain which is proportional
to frequency, going to zero at dc. Therefore, any noise in the multipliers at low




frequencies, will be of great importance; the noise power will diverge at dc as one over the
frequency squared. The analog multipliers available for use in the analog symmetric
demodulator were not particularly quiet. They had noise levels which were roughly
equivalent to 16 bit noise in digital systems. However, the problem should be dramatically
reduced if the symmetric demodulation can implemented on a high speed Digital Signal
Processor (DSP), where multiplication can be performed with 32 bit or better precision.
For this reason it is hoped that a digital implementation will perform better than the analog
version, and not have the dynamic range at low frequencies limited by excessive noise.
McGinnis [Ref 9] investigated the use of digital algorithms to implement the symmetric
demodulation scheme. He successfully programmed the algorithm in the LabVIEWTM
programming language, and was able to demonstrate increased performance over the
analog implementation (133 dB dynamic range @ 1 kHz 4% THD using a 51.2 kHz
sampling rate).

B. GOAL

The goal of the thesis was to design, implement and test a digital fiber-optic
interferometric demodulator using the passive symmetric demodulation scheme.
Ultimately, a stand alone digital demodulator was to be built for use in the field. The
performance of the demodulator was to be tested and compared against the analog version
of the symmetric demodulator and the computer simulation conducted by McGinnis.

C. BACKGROUND

1. Interferometric Sensors

Interferometric sensors developed at the Naval Postgraduate School for sensing
acoustic fields have been mostly based on the Mach-Zehnder two-beam interferometer, as
illustrated in Figure 1.1. The sensor is comprised of a low power semiconductor laser
which illuminates one leg of a 2x2 optical coupler. The output of the optical 2x2 coupler
comprises the two legs of the Mach-Zehnder interferometer. Each leg is strained
differentially by the field to be measured so that the two legs operate in a push-pull
manner. The optical path length changes in the two legs cause interference in the 3x3
optical coupler whose output can be fed to photo diodes for detection and demodulation.
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Figure 1.1. Schematic Diagram of a Fiber Optic Mach-Zehnder Interferometric
Sensor

An ideal 3x3-coupler provides three signals of equal amplitude, each with a relative phase
difference of 120°. The light intensities of each output leg from the 3x3-coupler are:

a = A + Bcos[d(t)], (1.1
b = A + Bcos[g(t)+120°], (1.2)
¢ = A + Bcos[g(t)+240°], (13)

where A is the average value of the optical intensity emitted by the optical fibers and B is
the peak deviation in optical intensity from the average value A. The signal of interest, ¢
(t) is assumed to be time harmonic:

Ht) = sin (0t)+ dyy (1. (1.4)

The ¢agn(t) term accounts for the phase fluctuations due to environmental effects
(hydrostatic pressure fluctuations and temperature changes) plus the static phase shift due
to the physical differences in the two optical path lengths. These fluctuations are assumed
to be slowly varying in comparison to the signal of interest and are therefore normally
ignored. A theoretical plot of a 3x3 coupler output with constant A and B is shown in
Figure 1.3. The three wave forms have been displaced from one another for clarity.
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Figure 1.2 Block Diagram of the Symmetric Demodulation Algorithm,
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Figure 1.3 Theoretical Plot of 3x3 Coupler Output. Wave Forms a, b and ¢ (solid
lines) for an Input Signal (dotted line) which Produced 4 pi Radians of Optical
Phase Shift in the Interferometer. The Wave Forms a, b and ¢ have been Displaced
from one another for Clarity.
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Figure 1.4 Phasor Diagram of Symmetric Demodulation Signals.




2. Symmetric Demodulation

The symmetric demodulation algorithm is is based upon the following expression:

u(v-w)+v(w-u)+w(-v) dt
(u? +vi+w?) ’

o) = | (1.5)

where ¢(t) is the signal of interest to be recovered and the dots above variables indicates a
time derivative.

The output intensity of each leg of the interferometer is as previously defined:

a = A + Becos[#t)], (1.6)

with similar expressions for b and c. After photo detection and amplification, the three
symmetric voltages are summed and scaled by a factor of -1/3 thereby producing an
estimate of the average signal level. This average dc content is then subtracted from each
of the interferometric voltage signals leaving only AC fluctuations about a bias of zero
volts. The interferometric signals, with the average dc component removed are now
denoted by u, v and w where

B cos[ 4(1)];
B cos[ #(t) +120°]; and (1.7)
= Bcos[¢(t) +240°]

u
v
w

The three signals u, v and w are then differentiated to produce the derivative signals

u = -BHOsin[ ¢}
v = —B@t)sin[ ¢(t)+120°] and (1.8)
w = —B §t)sin[ ¢(t)+240°]

Note that ¢(t) has come out of the arguments of the trigonometric functions. These three

symmetric-interferometric signals are then cross multiplied by the difference of the
"complimentary" derivatives to yield:




u(v—-w)=Becos(¢(t)) [—B H(t)sin(4(t) +120°) + B¢(.t)sin(¢(t)+240°):|;
v(w-u)=Bcos(¢(t)+120°) [—B Kt)sin (1) +240°) + B ¢(.t)sin(¢(t))]; and (1.9)

w(u-v)= Bcos(¢(t)+240°)[—B Kt)sin(H(1)) + B H(t)sin(§t) +120° )].

Figure 1.4 shows a plot of the signal phasors for the above combination of signals.

It can be shown by trigonometric identities that equation (1.9) can be simplified to:
u(w—v) =3B ¢(t) cos (#(1));
v(u-w)=V3B? §(t)cos’(¢(t)+120°); and (1.10)
w(v—1u)= 3B ¢(t)cos’ (§(t) +240°).
By noting:
cos?(x) + cos?(x +120°) + cos*(x +240°) = 3, (1.11)
the sum of the three equations in (1.10) can be shown to result in:

;zﬁ(t)Bz[cosz(¢(t)) +cos*(¢(t) +120°) + cos? (#(t) +240°) | = 3.3B? 1), (1.12)

The factor of B2 varies as a function of laser intensity, temperature, and the polarization
angle of the light in the fiber. This dependence is removed by summing the squares ofu, v

and w.

w?+v?+w?=1B% (1.13)

This result is used as a normalizing division factor. The ratio of equation 1.12 to equation
1.13 is then integrated to produce ¢(7).







IL. DESIGN OF A SYMMETRIC DIGITAL DEMODULATOR

This chapter discusses the details of the construction of a digital symmetric
demodulator based upon the algorithm described in chapter 1. Awvailable for use during
this thesis was an IBM AT PC, a digital signal processing (DSP) plug-in board, and an
interferometric signal simulator. The DSP card, the PC31, was built by Innovation
Integration of Moorepark, California. It is described in Appendix A. The heart of the
PC31 is comprised of a TMS320C31 DSP processor [Ref 10], which can be operated with
either 32 bit integer precision or full 32 bit floating point precision using extended
precision registers. It's 60 nsec single instruction cycle provides 16.7 million instructions
per second (MIPS), or 33.3 million floating point operations per second (MFLOPS). The
PC31 plugs into any IBM PC expansion bus (ISA), and can be fully programmed using
either the Texas Instruments TMS320 Floating-point DSP Optimizing C compiler [Ref
11], or the TMS320 Floating-point DSP Assembly Language Tools [Ref 12].

The Interferometric signal simulator is described in Appendix B. The simulator is
capable of simulating interferometric signals with optical phase shifts from several hundred
micro-radians to about 2 pi radians.

The symmetric demodulator design involves the following phases: Photo detection
of the three optical outputs from a 3x3 coupler; conversion to voltage signals proportional
to the light intensity; digitization of the input interferometric signals; digital differentiation,
multiplication, division, and integration. For my design, I have assumed that the three
optical interferometric signals, each 120° out of phase with each other, have been suitably
detected and conditioned to provide analog voltages which are limited to 2.75 Volts peak-
to-peak. I now turn my attention to a discussion of each stage of the designed digital
demodulator.

A. INITIAL DEMODULATOR DESIGN
1. Signal Digitization.

The PC31 provides two independent channels for analog input. Digital conversion
is via one Burr Brown DSP102 ADC chip [Ref 13]. The DSP102 is a two channel
analog-to-digital converter, ADC, which can operate at up to 200 kHz sampling rates




using either a 16 or 18 bit conversion size. Analog full scale input is set at 5.50 volts
peak-to-peak. The DSP102 communicates with the TMS320C31 via a serial peripheral
data bus. This data bus can operate at a maximum of 8.33 MHz. The DSP102 is
conFigured in the cascade mode. When strobed, it simultaneously converts both channels
A and B using a 16 bit conversion word and transmits the concatenated 32 bits across the
peripheral serial bus. To convert both channels and transmit the 32 bit result to the
TMS320C31 requires 4.8usec at the maximum possible transport rate of 8.33 MHz.
Channel A data occupies the upper 16 bits and channel B data the lower 16 bits of the 32
bit word conversion word. Using 16 bit conversion sizes results in approximately 84uV
peak quantization per bit, with an error of one half the least significant bit, or +42pV.

The first problem faced with the design of the demodulator was how to sample
three input channels using only one DSP102. Fortunately the PC31 allowed for eight
channels to be multiplexed on the A input of the DSP102. Therefore as part of the first
design, two of the three interferometric wave forms would have to be digitized by
multiplexing them on channel A of the DSP102. This was the easiest approach to
sampling, without designing complicated external digitization circuitry. However, this
would reduce the effective sampling rate and would not produce simultaneous samples.
Using a multiplexed digitization scheme, sampling channels A first and then B and C
together would reduce the maximum possible sampling frequency by a factor of two. This
will limit the maximum acceptable fringe rate (optical phase shift in the interferometer
times signal frequency) of the demodulator. At the maximum possible sampling rate of
200 kHz, the two conversions required to sample the three interferometric signals would
require a minimum time of about 10psec. This should allow sufficient time to process one
complete pass of the demodulation algorithm.

2. Algorithm Considerations.

As a first design, it was decided to calculate the derivatives of the interferometric
signals using the method of first difference. This was chosen for its simplicity in
implementation and least amount of computational burden. Since the TMS320C31 can
support both floating point and integer operations, it was decided to initially implement
the algorithm using integer operations since the input to the algorithm would be a 16 bit
signed integer from the analog to digital converter, and the output would ultimately be in
integer form for taking power spectra. However, careful consideration of the various
signal maximums and minimums would be required to avoid overflows.

10




The denominator term in the algorithm takes the sum of the squares of the three
input interferometric wave forms, essentially measuring the total optical power. Three 16
bit signed integers squared and added together could cause overflow in a resulting 32 bit
integer. Therefore, the denominator was scaled down by a factor of 216 Similarly, the
output of one of the multipliers is also a 16 bit number squared. This gets added to two
other multiplier outputs, resulting in a potential overflow in a 32 bit integer. Therefore,
each output from the multipliers was scaled down by a factor of two. Since the
denominator had been scaled by 216 the result from the division of the numerator (sum of
the three multiplier outputs) and the denominator would be an integer just larger than 216,
The integration of ;.zﬁ(t), was implemented using a first order difference equation |
y(n)=0.99*y(n-1)+x(n), where the initial decay constant was set to 0.99. The
output from the integrator is proportional to the signal that produced the original optical
phase shift in the interferometer.

With the initial design considerations outlined, it was decided to initially program
the algorithm using a well known platform, the IBM PC. Therefore the demodulation
algorithm was first written in Turbo C [Ref 14] and tested on an IBM PC. However, this
testing only used computer generated interferometric wave forms. The algorithm was also
programmed in MATLAB [Ref 15]. Here, testing was first conducted using computer .
generated interferometric wave forms as inputs and then using data samples from the
interferometric simulators taken using the PC31 and multiplexed sampling. The results of
these simulations are described below.

B. SIMULATION ON AN IBM PC USING TURBO C

The designed demodulation algorithm was written in Turbo C and tested on an
IBM PC. The demodulation program, TCDEMOD.C can be found in Appendix C. It was
decided that by using a well known programming language and host computer, it would be
easier to test and evaluate the demodulation algorithm from within a controlled
environment. The MATLAB programming environment was used to display output from
the TCDEMOD.C program. The MATLAB script file, PLOTDAT.M, used to display the
data, is also included in Appendix C. The interferometric wave forms were generated by
the TCDEMOD.C program and then demodulated using the algorithm discussed above.

Figures 2.1 - 2.4 show the various signals at different stages throughout the
demodulation process. Computer generated inteferometric waveforms produced by a

11




single sinusoid at 1/128th the sampling frequency with an amplitude which caused pi
radians of optical phase shift in the interferometer were used as input for the demodualtion
algorithm. The simulated interferometric signals were created at full quantization of + 215,
Figure 2.1 shows a plot of 200 samples of the computer generated interferometric input
signals for full 16 bit quantization (£32768). Figure 2.2 shows three plots of the
derivatives of each input signal after the dc bias has been removed. The derivatives were
calculated using a first difference approach. From the plots it can be seen that the
maximum range for the derivative signals is £5000 for this particular input optical phase
shift of pi radians. Figure 2.3 shows a plot of the first 500 samples of the numerator (left)
and denominator (right) output from the demodulation algorithm. The numerator signal is
proportional to g.b(t), which is the derivative of the signal of interest. Notice that it has
been represented as 32 bit integer (#2.147x10%). The denominator term, which is an
estimate of the input laser power, is used to compensate for variations in the input signal
caused by laser fluctuations. It is calculated by summing the squares of the signals u, v,
and w and has been scaled down to accommodate a 16 bit representation. Notice the
quantization noise associated with this scaling. The denominator fluctuates between
2.3435 and 2.3437, 2 bits of quantization noise, about 160 pV at full scale. Finally Figure
2.4 displays the output of the algorithm. This signal is from the digital integrator, a simple
difference equation y(n)=0.99y(n-1)+x(n). Since this program only ran for just over
1000 samples the integrator decay is quite noticeable. The transients present at the first of
the output are due to improper algorithm initialization.

12
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Figure 2.1 Input Interferometric Signals at Full Quantization. Signal a (solid line)
Signal b (large dotted line) and Signal c¢ (small dotted line).

5000
0
-3000 0 100 200 300 400 500
5000
0 [
-5000 0 100 200 300 400 500
5000
0 -
-5000
50 0 i00 - 200 300 400 500

Figure 2.2 Derivatives of the Interferometric Inputs after the dc Component has
been removed. Derivative of Signal u (top) Derivative of Signal v (middle), and
Derivative of Signal w (bottom).
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Figure 2.3 Output from the Numerator Calculations (Ieft) and Output from the
Denominator Calculations (right).
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Figure 2.4 Demodulation Output which is Proportional to ¢(t)
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The next set of Figures, 2.5 - 2.8, were again produced using the Turbo C
demodulation program, TCDEMOD.C and MATLAB script file PLOTDAT.M. This time
the program demodulated 10,000 points of computer generated interferometric data. The
input signals and the last 2048 points of the output signal were stored and used for
plotting in MATLAB. Figure 2.5 shows 200 points of the simulated interferometric wave
forms for an input sinusoid at a frequency of 1/128 that of the sampling frequency and an
amplitude which would generate 10 radians of optical phase shift in an interferometer.
Figure 2.6 shows plots of the resulting output from the demodulation process and its
resulting power spectrum. Since only the last 2048 of the 10,000 output samples
generated were plotted, the initial transients in the integrator have decayed and are not
present in the ouput. The power spectrum plot was produced using the PSD.M script file
from MATLAB's signal processing toolbox, version 3.1. The DFT size was 2048 points
and a Hanning window of the same size was used to window the data. Notice that the
signal has no dc present and it is outside the range of 16 bit quantization. The frequency
of the signal is at 781.3 Hz, 1/128 of 100 kHz sampling rate. The signal-to-noise ratio
| (SNR) is 140.6 dB, the peak output occurring at 114.8 dB. Notice the low distortion
present. For a given frequency, as the optical phase shift in the interferometer increases, a
result of an increase in the measured acoustic field, the distortion of the output increases.
The next two Figures show this effect. Figure 2.7 shows a plot of the interferometric
wave forms generated for an input sinusoid, again at a frequency of 1/128 of the sample
frequency, fs, but at a much greater acoustic amplitude (50 radians optical phase shift
produced in the interferometer). Figure 2.8 shows a plot of the output of the demodulator
and a plot of its power spectrum. The effective fringe rate (optical phase shift times signal
frequency) is now 39,000 fringes per second. Notice however that even at large distortion
levels the output signal still resembles a sinusoid and may still be reasonably detected.

15
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Figure 2.7 Input Interferometric Wave Forms for a Sinusoidal Input at 1/128 the
Sample Frequency, fs and an Amplitude which Generated 100 Radians of Optical

Phase Shift in the Interferometer.
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C. SIMULATION USING MATLAB

It was decided to also simulate the demodulation algorithm in MATLAB.
MATLAB offers a very easy programming environment were signals and noise can be
readily simulated, processed and displayed. It offers the ideal environment for
investigating the behaviour of the algorithm. MATLAB uses floating point arithmetic for
its internal calculations, but output data can be rounded or fixed to the nearest integer.
The script file, DEMOD.M, written for the MATLAB simulation can be found in
Appendix C.

Figures 2.9 - 2.13 display various output wave forms from the demodulation
process. Figure 2.9 is a plot of the MATLAB generated simulated interferometric signals.
The input signal was a sinusoid at 600 Hz with an acoustic amplitude which resulted in pi
radians of optical phase shift in the interferometer. The simulated signals had a dc offset
of 0.5 Volts peak and quantization amplitude equivalent to 214, Figure 2.10 is a plot of
the derivatives of the three mterferometrlc 51gnals u, v and w after the dc component has
been removed. The upper plot shows u; v is plotted in the middle plot and w is plotted
in the bottom. The plots of the derivatives closely match those shown for the Turbo C
program. Figure 2.11 shows plots of the outputs from the three multiplier stages. The
top plot shows the output multiplication of signal u with the complementary derivatives

(w—v), the middle plot shows the output from the multiplication of v with (u—w), and

the bottom plot displays the output from the multiplication of w with (\./— 1.1). Figure 2.12
displays plots of the numerator and denominator signals. Notice how the denominator
once again has one bit of quantization noise. This is a result of fixing the floating point
value output from MATLAB. The denominator is very close to a constant value for this
simulation. However, the program allows for simulation of slowly fluctuating laser inputs.
Notice also that at this level of optical phase shift the numerator term has not yet exceeded
32 bit integer quantization limit. Figure 2.13 shows the output signal from the
demodulation process and its power spectral density. The output looks very clean, and
indeed has very little distortion as indicated by the power spectrum. Notice that the
output from this MATLAB simulation is less distorted than the output from the Turbo C
simulations. The demodulation algorithm was extensively simulated using MATLAB,
over a wide range of frequency ratios (input frequency divided by sampling frequency), an
input optical phase shifts. Several observations were noted. First, the numerator
overflows a 32 bit signed representation using integer arithmetic for large fringe rates
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(fringe rates greater than 100). Therefore the components making up the numerator will
have to be scaled by a factor of one half. This will be sufficient to avoid any overflow.
Secondly, at small optical phase shifts, 100's of micro radians, the demodulator sensitivity
will be determined by the signal derivatives which under flow 16 bit quantization first.
With these discoveries in mind it was now time to implement the algorithm on the PC31.
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Figure 2.9 MATLAB Generated Interferometric Wave Forms. Signal a (dotted
line), Signal b (dashed line) and Signal c (solid line).
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Figure 2.10 Derivatives of the Interferometric Signals with the dc Component
Removed. Derivative of signal u (Top), Derivative of signal v (Center), and
Derivative of Signal w (Bottom).
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Figure 2.11 Outputs from the Three Multiplier Stages (Top) u(w v),
(Center) v(u w), and (Bottom) w(v u)
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Figure 2.12 Numerator signal (Upper plot). Denominator signal (Lower plot).
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Figure 2.13 Demodulator Output (Upper plot) and its Power Spectral Density
Plotted in dB's vs. Nyquist Frequency (Lower plot).

D. PROGRAMMING THE PC31

Once the algorithm had been successfully programmed and tested in MATLAB, it
was time to consider an implementation on the PC31 DSP board. 1 initially decided to
program the demodulation algorithm in C using the TMS320 optimizing C compiler. The
program titled TMSDEMOD.C can be found in Appendix C. The most challenging part
of implementing the demodulator design on the PC31 was in choosing the method used to

sample the three interferometric signals.

1. TMS320 Optimizing C Compiler Programs

The DSP102 analog-to-digital converter (ADC) can be strobed to start a
conversion by either writing to a memory location, or by jumping one of three different
programmable clocks on the PC31 board to the convert pin of the DSP102. Once a
conversion is complete (analog-to-digital conversion plus transport of 32 bits along the
serial port), the TMS320C31's internal serial port generates an interrupt signal when its
receive buffer is full. This interrupt signal can be used to interrupt the CPU at the end of a
conversion. It can also be masked, in which case the program must poll the serial port and
wait for the conversion to complete. I initially decided to run the conversion process
using a polling approach. The conversion process of the multiplexed input line INO starts
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when a dummy store was made to the memory location decoded for the ADC. After
receiving the convert command the DSP102's internal hold circuitry keeps the inputs
constant while the conversion is in process. This allows the inputs to the DSP102 to be
changed immediately after a convert command has been given. Therefore while the
conversion is in process the multiplexer channel is switched to another input, IN1. This
gives the multiplexer sufficient time to settle (the analog multiplexer requires 1 psec for its
output to settle to within 0.1% of true value. Waiting 3.5 psec increases the accuracy to
0.01%). After 4.8 usec, the converted data is received at the serial port and can be read
by the program. The first conversion made by the DSP102 is not valid and must be
discarded. The next conversion represents the first data sample. Once the data is read, a
new conversion can be signaled with a write to the ADC's memory location and the
multiplexer can be switched back to channel INO. The data read from the DSP102 is
shifted to the right 16 bits, representing signal sample a, which is stored until all three
signal samples are read. The program then waits for the next sample by polling the status
of the serial port. Once the next conversion has been received it is read and the 32 bit
conversion word is separated into sample b (upper 16 bits) and sample ¢ (lower 16 bits).
Once the three samples have been read the program enters the demodulation process. The
denominator term, derivatives and numerator are calculated and used to compute the first
output sample. This loop repeats itself until 4000 data samples have been computed.

Several C programs were written to test various aspects of the demodulation
algorithm and to save other intermediate variables. The internal memory storage of the
PC31 was limited to 26,600 32 bit words of storage for both program and data.
Therefore not all intermediate data could be stored at one time. Once computed the data
could be downloaded from the PC 31 for viewing and manipulation in MATLAB.
Although the programs written in C and compiled using the TMS320 optimizing C
compiler were successful in implementing the demodulation algorithm, the execution was
not very fast and this limited the effective sampling rate. This was due in part to the
optimizing C compilers usage of the TMS320C31 register set and the adherence to the
TMS C function calling conventions. Also, the routines were slowed down because of the
need to wait for ADC conversions while polling. The solution to the two problems was to
switch to assembly language programming, instead of using the C compiler, and use serial
port interrupts instead of polling. Use of interrupts would allow the demodulation routine

23




to continue with computations instead of having to poll the serial port for new ADC

conversions,

2. TMS320 Assembler Programs

After several long months of learning the intricacies of the TMS320C31 addressing
modes, I was ready to tackle the job of writing the demodulation algorithm in assembly
language. I first wrote a simple assembly language routine to sample data presented to
channels INO and IN1 of the multiplexer and input B of the DSP102. This program is
called TST3.ASM and it is included in Appendix C. The program takes up to 8192 points
of data from the three input channels. The DSP102 ADC is driven using internal timer
clock number one (TCLK1) from the TMS320C31. The serial port interrupts the CPU
when it has received the full conversion from the ADC. Input A to the DSP102 is
multiplexed through channels INO and IN1 of the multiplexer. Interferometric signal a is
connected to INO and interferometric signal b is connected to IN1. Interferometric signal
¢ is connected directly to input B of the DSP102, which is not multiplexed. After
initialization of the serial port, internal timer and program variables, the interrupts are
enabled and the program waits in an infinite loop until interrupted. Data from signal a
(upper 16 bits of first serial port read) is read and stored after the first interrupt. The data
read from input B of the DSP102 is discarded. The multiplexer channel is then switched
to channel IN1 and the routine waits for the next interrupt. Once interrupted, data from
signal b (upper 16 bits) and signal ¢ (lower 16 bits) are read and stored. This completes
the sampling of the first three interferometric signals. The multiplexer is then switched
back to channel INO and waits for the next interrupt in order to get the next set of
samples. A data index pointer increments after collecting the three data samples. After
taking 8192 samples the interrupts are disabled and the PC31 can be reset. The sampled
data can then be downloaded to the host computer. This routine can be run at the
maximum sampling frequency of 200 kHz. However, because of the need to multiplex the
input data, the effective sampling rate for all three channels is reduced in half to 100 kHz.

Once the multiplexed data sampling routine, TST3.ASM had been written and
tested, it was time to consider the implementation of the complete demodulation
algorithm. Program TSTS5.ASM, shown in Appendix C, is the routine I developed to
implement the demodulation algorithm on the PC31 using integer operations. This routine
accepts three simulated interferometric signals a, b and ¢ each 120° out of phase with each
other. The outputs from the interferometric signal simulators are applied to INO, IN1 and
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input B on the DB37 analog connector on the back of the PC31. The algorithm digitizes
this data and implements a symmetric demodulation of the input signals using integer
operations. 8192 points of the denominator, numerator and output are computed and
stored for downloading to the host computer. Several interesting statistics about the
algorithms timing were clarified during the development of this routine. First, it takes
about 540 nsec (9 instructions) from an interrupt occurring to the first instruction of the
interrupt service routine. Secondly, the time required to read sample a after an interrupt
has occurred, switch the multiplexer to channel IN1, store the data and return from the
interrupt takes about 1.5 psec. Once the first data sample has been read, from the time the
second interrupt is generated to the end of the demodulation process requires 10 psec.
However, this time varies by as much as 1 usec. This is because of the integer division.
Each integer division requires between 31 - 62 cycles to execute depending upon the
amount of normalization needed. However, each floating point divide requires only a
fixed 40 cycles to execute. The assembly language routines which implement these
divisions were provided with the TMS320 development package.

Since using a floating point divide may be quicker in some cases than an integer
divide, I decided to also implement the demodulation algorithm using floating point
operations.  Assembly language routine TST7.ASM implements the demodulation
algorithm floating point operations on the PC31. This program is also included in
Appendix C. Only minor changes were required to TST5.ASM to implement the
algorithm in floating point. However, I had to be careful to use the 40 bit extended
precision registers RO - R7, which offer a full 32 bit mantissa field and an eight bit
exponent field. Again 8192 points of the denominator, numerator and output are
calculated and stored. Before the results are stored they are converted to 32 bit integers.
This was required since the 40 bit extended precision registers cannot be fully stored in a
32 bit memory location. Also, 32 bit integers were required for downloading to
MATLARB for analysis.
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1. PERFORMANCE OF THE DIGITAL DEMODULATOR

The digital ‘demodulator was tested using the analog interferometric signal
simulators as the source for the interferometric wave forms. See Appendix A for a
description of the signal simulators. Each simulator was set to output 3.0 volts peak-to-
peak. This corresponded to the design input of 1.5 volts peak for each channel of the
DSP102. The interferometric simulators were driven using a Stanford Research Systems,
Model DS345 function generator which provided the source signal ¢(t). The frequency
and amplitude of the input source signal determine the frequency and optical phase shift of
the interferometric waveforms. The static phase shift of each simulator was set such that
each of the three outputs was 120° out of phase from each other. The testing of the
demodulator proceeded in three phases. First, the DSP102 and the multiplexed sampling
dynamics were tested for full scale voltage linearity, noise and offset. Secondly, the
analog signal simulators were sampled to see how they compared to theoretical computer
generated interferometric wave forms. Finally, the demodulator output was tested using

several sinusoids at various amplitudes.

A. TESTING OF THE INPUT SAMPLING CIRCUITS.

First the DSP102's offset and gain adjustment were checked using the procedures
outlined in the PC31 user's guide [Ref 16:p 40]. The program TST3.ASM, shown in
Appendix C, was assembled using the TMS320 assembler and then downloaded to the
PC31 to run the data collection program. The multiplexer and ADC were then tested
using a single sinusoid applied to INO, and IN1 of the multiplexer and channel B of the
DSP102. A 600 Hz sinusoid was generated using a Stanford Research Systems Model
DS345 function generator set to 2.0 volts r.m.s., the full scale voltage for the DSP102
inputs. The three channels were then sampled at 151.5 kHz for an effective multiplexed
sampling rate of 75,757.6 Hz. Data was collected on the PC31 and then was downloaded
to the PC for analysis using MATLAB.

1. Data for Full Scale Inputs

Figures 3.1 to 3.3 were generated using the MATLAB script file PLOTABC.M,
included in Appendix C. The power spectral density estimates were calculated and plotted
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using the progam PSD.M from the signal processing toolbox, version 3.1. 8192 points
were used for the DFT calculations and the data was windowed with a Hanning window
of the same size. The Total Harmonic Distortion (THD) estimate was made using the
fundamental and the first 10 harmonics. Figure 3.1 shows a plot of the data taken from
channel INO of the multiplexer (upper plot). The power spectral density of channel INO
and an estimate of the distortion present is shown in the lower plot. Figure 3.2 shows
plots of data taken from channel IN1 of the multiplexer. Theoretically Figures 3.1 and 3.2
should be identical. Any differences between the two plots are due to the differences in
the two multiplexer channels. As can be seen from the plots, both channels are very close
to each other. Figure 3.3 shows data taken from channel B of the DSP102. In all three
plots the 2.0 volts r.m.s. input produces close to full scale readings from all three channels.
The signal generator used to generate the test sinusoid or the DSP102 has about 2% total
harmonic distortion. This was the same function generator which was used to drive the
three interferometric signal simulators.

2. Data for Inputs Grounded.

Next, INO, IN1 and input B were grounded to the analog ground plane. Program
TST3.ASM was downloaded to the PC31 and the three channels were sampled at an
effective rate of 75,757.6 Hz. 8192 points of the sampled input were taken, stored and
downloaded to the PC for plotting in MATLAB. The plots were generated using the
script file PLOTABC.M, however, this time only 4096 points of the data were used for
the power spectral density plots resulting in a bin width of 18.5 Hz. Using a 4096 point
Hanning data window gave an equivalent noise bandwidth of 22.75 Hz [Ref 17] for the
power spectrum plots. Figures 3.4 - 3.6 show plots of this grounded condition. Notice
the noise on all three channels. It is digital in nature and has large fluctuations about zero.
Figure 3.4 shows sampled data from channel INO. The upper plot shows 500 points of the
sampled data. Using the calculated standard deviation of 3.663 the noise for channel INO
was calculated to be about 0.3 mV. Figure 3.4 shows plots of data taken from input IN1
to the multiplexer. Using the calculated standard deviation of the data, the noise for this
channel was calculated to be also about 0.3 mV. Figure 3.6 shows plots of data taken
from input B to the DSP102. Using the calculated standard deviation, the noise for this
channel was calculated to be about 0.4 mV. Input B to the DSP102 is slightly more noisy
than channel A. This can also be seen from Figure 3.6 where it is easy to see that the gain
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setting for input B of the DSP102 is slightly higher than that of input A. Also, both
channels are slightly offset from zero.
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Figure 3.1 Plots of Full Scale Input to Multiplexed Channel IN0. Sampled Data
Plotted as a Function of Magnitude and Sample Number (Upper plot). Power
Spectrum of Input Plotted in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.2 Plots of Full Scale Input to Multiplexed Channel IN1. Sampled Data as a
Function of Sample Number and Magnitude (Upper plot). Power Spectrum of
Input Data Plotted in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.3 Plots of Full Scale Input to Input B of the DSP102. Sampled Data
Plotted as a Function of Magnitude and Sample Number (Upper plot). Power
Spectrum of the Sampled Data Plotted in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.4 Plots of Channel INO of the Multiplexer for Grounded Input. First 500
Data Points of Sampled Input (Upper plot). Power Spectral Density of Channel INO
Plotted in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.5 Plots of input IN1 of the multiplexer for Grounded Input. First S00 Data
Points of Sampled Input IN1 (Upper plot). Power Spectral Density of Grounded
Channel IN1 Plotted in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.6 Plots of Input B to the DSP102 for Grounded Input. First 500 Data
Points of Sampled Input (Upper plot). Power Spectral Density of Grounded
Channel B Plotted in dB's vs. Nyquist Frequency (Lower plot).
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B. SAMPLING OF THE INTERFEROMETRIC SIGNAL SIMULATORS

The next test was conducted using the interferometric signal simulators. The
simulators were driven with a 1.0 kHz sinusoid at an amplitude of 1.0 Volt peak. This
produced interferometric wave forms with about 1.0 radian of optical phase shift since the
scale factor for the simulators was 0.933 rad/Volt (see Appendix B). The data was taken
using program TST3.ASM set to sample the data at an effective sampling rate of 75,757.6
Hz. The output from the PC31 was downloaded, analyzed and plotted in MATLAB using
the script file LDTST3.M. This program is included in Appendix C. The power spectral
density plots of the interferometric channels were calculated with program PSD.M, using
2048 point DFTs and a Hanning data window of the same size. This gave an equivalent
noise bandwidth of 45.5 Hz.

Figures 3.7 - 3.9, show plots of the sampled interferometric channels. Plot 3.7 is a
plot of interferometric simulator #1 which was set to a static phase shift of -120°. This
was applied to channel INO on the analog connector to the PC31. The top plot displays
the sampled data while the bottom plot displays the power spectrum plotted in dB's vs.
digital frequency f/fs. Figure 3.8 is a plot of interferometric simulator #2 set to a static
phase shift of 0. It was connected to IN1 on the analog connector to the PC31. Figure
3.9 shows plots of interferometric simulator #3, set to a static phase shift of +120°. It was
connected to Input B of the DSP102. All three simulated wave forms produce spectrums

which are typical for interferometric signals.
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Figure 3.7 Plots of Interferometric Signal Simulator #1 Set to a Static Phase Shift of
-120°, 1.0 kHz Input and 1.0 Radian of Optical Phase Shift. Multiplexed Channel
INO Sampled at 75,757.6 Hz (Upper plot). Power Spectrum of Interferometric
Signal Plotted in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.8 Plots of Interferometric Signal Simulator #2 Set to a Static Phase Shift of
0° 1.0 kHz Input and 1.0 Radian of Optical Phase Shift. Multiplexed Channel IN1
Sampled at 75,757.6 Hz (Upper plot). Power Spectrum of Interferometric Signal
Plotted in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.9 Plots of Interferometric Signal Simulator #3 Set to a Static Phase Shift of
+120°, 1.0 kHz Input and 1.0 Radian of Optical Phase Shift. Input B to DSP102
Sampled at 75,757.6 Hz (Upper plot). Power Spectrum of Interferometric Signal

Plotted in dB's vs. Nyquist Frequency (Lower plot).




C. DIGITAL DEMODULATOR OUTPUT.

The two assembly language programs written to perform the digital demodulation,
TSTS5.ASM (integer operations), and TST7.ASM (floating point operations), were tested.
TST5.ASM was run at an effective sampling rate of 69,444.4 Hz, while TST7.ASM could
be run a little faster at 75,757.6 Hz. Three interferometric signal simulators driven by the
Stanford Research Systems DS345 function generator were used to simulate the
interferometric wave forms for the demodulator.

1. Demodulator Response to Input Frequency Variations.

The demodulator response to frequency variation was tested by simulating
interferometric signals at constant optical phase shift but at two separate frequencies of
600 and 1200 Hz. For program TST7.ASM using a sampling rate of 75,757.6 Hz the
input frequencies were 0.0079 and 0.0158 times the sampling rate, fs. For program
TST5.ASM using a sampling rate of 69,444.4 Hz, the input frequencies were 0.0086fs and
0.0173 times the sampling rate, fs. Interferometric wave forms with pi radians of optical
phase shift were produced using the interferometric simulators. In each run, 8192 points
of the denominator, numerator and output signals were calculated by the demodulation
program and later downloaded to the PC. Plotting and analysis of the data was conducted
in MATLAB using the script files LDTST5S.M and LDTST7.M. Power spectrum
estimates were plotted using MATLAB's PSD.M script file from the signal processing
toolbox, version. 3.1. The data was windowed using a 4096 point Hanning window
thereby producing an equivalent noise bandwidth of 22.75 Hz. The power spectral density
plots were plotted in dB's versus Nyquist frequency. Figures 3.10 through 3.13, show
demodulator output taken using the program TST5.ASM. Figures 3.14 through 3.17
show output taken using the program TST7.ASM. The estimates of the harmonic
distortion were made using the fundamental and first ten harmonics. Both denominator
plots in Figure 3.11 and 3.13 show variations due to the non-simultaneous sampling. The
denominator term, an estimate which is proportional to the laser power, should be a
constant since the simulated interferometric signals have no variation due to laser power
fluctuations.
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Figure 3.10 Denominator Divided by 216 (Left plot) and Numerator (Right plot)
Calculated Using Program TSTS.ASM for Input Interferometric Signals of pi
Radians Optical Phase Shift at Frequency 0.0176fs.
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Figure 3.11 Demodulator Output for Interferometric Input of pi Radians Optical
Phase Shift at Frequency 0.0176fs. 500 Points of Demodulator Output (Upper plot).
Power Spectrum of Output Plotted in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.12 Denominator Divided by 216 (Left plot) and Numerator (Right plot)
Calculated Using Program TSTS5.ASM for Input Interferometric Signals of pi
Radians Optical Phase Shift at Frequency 0.0088fs.
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Figure 3.13 Demodulator Output for Interferometric Input of pi Radians Optical
Phase Shift at Frequency 0.0088fs. 500 Points of Demodulator Output (Upper plot).
Power Spectrum of Output Plotted in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.14 Denominator (Left plot) and Numerator (Right plot) Calculated Using
Program TST7.ASM for Input Interferometric Signals of pi Radians Optical Phase
Shift at Frequency 0.0161fs,
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Figure 3.15 Demodulator Output for Interferometric Input of pi Radians Optical
Phase Shift at Frequency 0.0161fs. 500 Points of Demodulator Output (Upper plot).
Power Spectrum of Output Plotted in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.16 Denominator (Left plot) and Numerator (Right plot) Calculated Using
Program TST7.ASM for Input Interferometric Signals of pi Radians Optical Phase
Shift at Frequency 0.0081fs.
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Figure 3.17 Demodulator Output for Interferometric Input of pi Radians Optical
Phase Shift at Frequency 0.0081fs. 500 Points of Demodulator Output (Upper plot).
Power Spectrum of Output Plotted in dB's vs. Nyquist Frequency (Lower plot).
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2. Demodulator Response to Optical Phase Shift Variations.

The demodulator response to variation in optical phase shifts was tested by
simulating interferometric signals at a constant frequency of 600 Hz. The optical phase
shift produced by the interferometric simulators was adjusted by setting the amplitude of
the function generator driving the simulators to three different voltages, 0.01, 0.1 and 0.5
Volts peak. Using the scale factor for the simulators, this was equivalent to 9.33, 93.3,
and 466.5 mrad of optical phase shift respectfully. In each run, 8192 points of the
denominator, numerator and output signals were calculated by the demodulation programs
and later downloaded to the PC. Plotting and analysis of the data was conducted in
MATLAB using script files LDTST5.M and LDTST7.M. LDTST7.M is included in
Appendix C. Power spectrum estimates were plotted using MATLAB's PSD.M script file
from the signal processing toolbox, version. 3.1. The data was windowed using a 4096
point Hanning window thereby producing an equivalent noise bandwidth of 22.75 Hz.
The power spectral density plots are plotted in dB's versus the Nyquist frequency. Figures
3.18 through 3.23, show demodulator output taken using the program TST5.ASM.
Figures 3.24 through 3.29 show output taken using the program TST7.ASM. The
estimates of the harmonic distortion were made using the fundamental and first ten

harmonics.

From the plots, it would appear that both demodulation programs can demodulate
reasonable ranges of interferometer optical phase shifts. However, demodulation program
TST7.ASM, which uses floating point operations appears to have lower denominator
fluctuations yet a higher distortion level in the output. Also, demodulation program
TST7.ASM executes slightly faster than demodulation program TST5.ASM. Both
programs have limited optical phase shift sensitivity because of the non constant
denominator signal which is a result of non-simultaneous sampling. I was unable to test
the demodulation programs in the multifringe range because of the limitation of the
interferometric signal simulators. They could only produce a maximum optical phase shift
of 2 pi radians.
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Figure 3.18 Denominator Divided by 216 (Left plot) and Numerator (Right plot)
Calculated using Program TSTS.ASM for Input Interferometric Signals at 9.3 mrad
Optical Phase Shift at Frequency 0.00864fs.
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Figure 3.19 Demodulator Output Calculated using Program TSTS5.ASM for Input
Interferometric Signals of 9.3 mrad of Optical Phase Shift at Frequency 0.00864fs.
500 Points of Demodulator Output (Upper plot). Power Spectrum of Output Plotted
in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.20 Denominator Divided by 216 (Left plot) and Numerator (Right plot)
Calculated using Program TST5.ASM for Input Interferometric Signals at 93.3
mrad Optical Phase Shift at Frequency 0.00864fs.
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Figure 3.21 Demodulator Qutput Calculated using Program TSTS.ASM for Input
Interferometric Signals of 93.3 mrad of Optical Phase Shift at Frequency 0.00864fs.
500 Points of Demodulator Output (Upper plot). Power Spectrum of Output Plotted
in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.22 Denominator Divided by 216 (Left plot) and Numerator (Right plot)
Calculated using Program TSTS.ASM for Input Interferometric Signals at 466.5
mrad Optical Phase Shift at Frequency 0.00864fs.
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Figure 3.23 Demodulator Output Calculated using Program TST5.ASM for Input
Interferometric Signals of 466.5 mrad of Optical Phase Shift at Frequency 0.00864fs.
500 Points of Demodulator Output (Upper plot). Power Spectrum of Output Plotted

in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.24 Denominator (Left plot) and Numerator (Right plot) Calculated using
Program TST7.ASM for Input Interferometric Signals at 9.33 mrad Optical Phase
Shift at Frequency 0.00792fs.
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Figure 3.25 Demodulator Output Calculated using Program TST7.ASM for Input
Interferometric Signals of 9.33 mrad of Optical Phase Shift at Frequency 0.00792fs.
500 Points of Demodulator Output (Upper plot). Power Spectrum of Output Plotted
in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.26 Denominator (Left plot) and Numerator (Right plot) Calculated using
Program TST7.ASM for Input Interferometric Signals at 93.3 mrad Optical Phase
Shift at Frequency 0.00792fs.
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Figure 3.27 Demodulator Output Calculated using Program TST7.ASM for Input
Interferometric Signals of 93.3 mrad of Optical Phase Shift at Frequency 0.00792fs.
500 Points of Demodulator Output (Upper plot). Power Spectrum of Output Plotted
in dB's vs. Nyquist Frequency (Lower plot).
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Figure 3.28 Denominator (Left plot) and Numerator (Right plot) Calculated using
Program TST7.ASM for Input Interferometric Signals at 466.5 mrad Optical Phase
Shift at Frequency 0.00792fs.
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Figure 3.29 Demodulator Output Calculated using Program TST7.ASM for Input
Interferometric Signals of 466.5 mrad of Optical Phase Shift at Frequency 0.00792fs.
500 Points of Demodulator Qutput (Upper plot). Power Spectrum of Output Plotted

in dB's vs. Nyquist Frequency (Lower plot).
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IV. DESIGN OF AN EXTERNAL SAMPLE AND HOLD CIRCUIT

This chapter discusses the design of an external sample and hold circuit which
provided four channels of simultaneously sampled inputs. The PC31 limits analog input to
two channels which can be sampled simultaneously using one DSP102. To obtain three
analog input channels required the use of the internal multiplexing which resulted in non-
simultaneous sampling. The results from the demodulation using non-simultaneous
sampling clearly show an increase in output distortion caused by a non-stable
denominator. Therefore, it was decided to build an external circuit which would provide

simultaneous sampling.

A. DESIGN

The heart of the circuit involves three SHC5320 sample and hold IC's and an HI
507a multiplexer, refer to Figure 4.1, both from Burr-Brown [Ref 18]. The sample and
hold IC's were conFigured in the non-inverting unity gain mode. They were supplied with
+15 volts and the inputs were protected with input limiting diodes. Input to the three
sample and holds can be from either the interferometric simulators or photo detected 3x3
coupler outputs. The outputs from the sample and hold are sent to input pair 1A and 1B,
and input 2A of the multiplexer. Input 2B of the multiplexer is grounded. The outputs,
OUT A and OUT B from the multiplexer are connected to inputs A and B of the DSP102.

The timing for the multiplexer and sample and hold circuitry is generated by the
PC31 using internal timer #1, and the 82C54 timer, and by the external board using an
74HCT73, 74HCT109, and a 74HCTO04. The timing of the sample and hold board is
show in Figure 4.2 for the designed sampling frequency of 100 kHz. The PC31's internal
timer #1 (TCLK1) is conFigured to run as a square wave clock source with a frequency
dependent upon the value loaded into the period register. A value of decimal 41 loaded
into this register generated a clock frequency of 203.252 kHz. TCLKI1 is used to generate
the master timing clock. TCLK]1 is routed from the PC31 to the external board where it is
divided by two using one half of a 74HCT73 JK flip-flop, and one half of a 74HCT109 JK
flip-flop. The 74HCT73 is rising edge triggered while the 109 is falling edge triggered.
These two chips generate two timing clocks at one half the frequency of TCLK1, 101.626
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kHz, one in phase with the rising edge of TCLK1, the other in phase with falling edge of
TCLKI1.

The rising edge of TCLKI is used to gate timer/counter 0 of the 82C54. The
82C54 is a CMOS programmable interval timer. There is one such timer on the PC31
DSP board. The 82C54 has three independent 16 bit counters, which can operate in either
BCD or binary counting. Each counter has six programmable modes of operation. Timer
0 is conFigured for mode 1, hardware retriggerable one-shot operation. When triggered
by the rising edge of TCLK1, the output of timer 1, OUTO, goes low on the clock pulse
following the trigger and remains low for the number of clock cycles loaded into the count
register. The input clock source for counter O is the peripheral clock driver set to one
quarter of the system clock, 8.33 MHz. Counter O is loaded with a count of decimal 9
which produces an output low signal of about 1.16 psec. OUTO is then inverted by one
6th of a 74HCTO04 and used as the convert signal for the DSP102.

Timer 1 of the 82C54 is also conFigured in mode 1, hardware retriggerable one-
shot. The output from the 74HCT109, is used to trigger timer 1 on input GATEI to the
82C54. OUT1 goes low on the clock pulse following the trigger and remains low for the
number of clock cycles loaded in its count register. A value of decimal 58 loaded into the
count register produces a low pulse of 7.2 pusec on OUT1. This signal is also inverted by
one sixth of a 74HCTO04 and used to switch the Hold/Sample* input to the SHC5320's.
The output from the 74HCT73 is used to drive pin AO of the multiplexer. This pin when
brought low selects input pair #1. A high on pin A0 selects input pair #2.

The SHC5320's are brought to the hold state within 200 nsec of the rising edge of
TCLK1. Then the DSP102 is triggered by the falling edge of OUTO0*, 1.16 psec after the
rising edge of TCLK1. This gives the held output from the SHC5320's approximately 1 p
sec to settle before being sampled. At 2.5usec after the rising edge of TCLK1 the falling
edge of TCLK1 switches the multiplexer from input pair 1, (interferometric signals a and
c), to input pair 2, (interferometric signal b and ground). This gives the multiplexer
outputs approximately 3.6 psec in which to settle before being sampled, more than
sufficient time to achieve 0.01% accuracy. 4.8 psec after the convert command to the
DSP102 , the first conversion is complete and interrupts the processor. The next
conversion 1s signaled at 5.0 psec from the first, and after 1 psec the SHC5320's are
brought to the sample state. This gives the sample and holds about 1.4 psec in which to
re-track the input signal.
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B. RESULTS OF CIRCUIT TESTING

With the external sample and hold circuit connected to the PC31, I was able to
obtain four channels of analog input which could be simultaneously sampled at a2 maximum
of 100 kHz. However, because the circuit was built on an external Proto-Board, with
little consideration of interference, the noise levels at the input were greatly elevated,
roughly on the order of 0.5 mV per channel. Nonetheless, I was able to implement the
algorithm using this sampling circuit and the denominator signal was relatively constant,
and the output showed signs of reduced distortion. A permanent board is currently being
constructed by Professor Keolian for use with the PC31. This circuit was engineered to
reduce the unwanted effects of external noise sources.
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Figure 4.1 Schematic of external sample and hold circuitry.
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V. CONCLUSIONS AND RECOMMENDATIONS

This thesis has demonstrated that implementation of the symmetric demodulation
scheme by digital signal processing hardware is possible and in fact extremely practical. It
was shown that by using a DSP plug-in board, based upon the TMS320C31 DSP
processor, the demodulation of three interferometric signals could execute in as little time
as 10 psec. Using a first difference approach was suitable for calculation of the signal
derivatives. The algorithm can be implemented using either fixed point integer or floating
point operations, although the fixed point algorithm may take longer to execute. The
demodulation execution time fixes the maximum sampling rate of the demodulator and
thus the maximum allowable fringe rate, which is directly proportional to the sampling
rate. The sensitivity of the demodulator is fixed by the size of the analog-to-digital
quantization which is a function of the ADC. For a give sampling rate set by the
demodulation process, increasing the conversion word size of the analog-to-digital
converters will increase the sensitivity. Use of delta sigma converting ADCs, as suggested
by McGinnis [Ref 9], was never considered, however, their usefulness could easily be
verified in the future.

It was also shown that non-simultaneous sampling of the input interferometric
signals leads to elevated levels of distortion in the output. These effects were not
quantified and are left for follow-on research. An external sample and hold circuit was
built and tested which would allow for the simultaneous sampling of up to four analog
channels at a maximum of 100 kHz. This was shown to produce a fairly stable
denominator signal which lead to reduced distortion in the output.
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APPENDIX A. DSP CARD: PC31 BY INNOVATION INTEGRATION

The PC31 is a very high performance, IBM PC plug-in co-processor featuring the Texas
Instruments TMS320C31 DSP processor. Lt. B. McGinnis had previously surveyed many
DSP boards, and the PC31 was selected for its processing capabilities, analog section,
good input-output support, and low cost. The TMS320C31 DSP processor meets all of
the requirements for high-speed, real time applications: 17 MIPS/ 33 MFLOPS of
processing power, hardware floating point multiplier/accumulator, DMA controller, on
chip synchronous serial port ADC and DAC.

Software is interactively developed and tested using the optimizing ANSI
compatible C compiler. Applications are developed and tested using the integer and
floating point math, analog/digital I/O and video display libraries provided with the
Developers package. All systems and application procedures may conveniently be
interactively edited, tested and executed at full machine speed.

The Board serves as its own development system using the system monitor
resident in the IBM PC host in combination with other essential software tools supplied
with the Developers package. Once an application has been created, it may be embedded
in PROM for stand alone operation or downloaded to the board from within the system
monitor. The PC31 communicates with an IBM PC/AT, or equivalent, via a high speed
dual port memory arrangement which allows access to all PC31 memory and peripherals
from the IBM PC.

Interfacing with external peripherals is accomplished with two 10-pin serial ports,
one 37-pin analog connector, one 50-pin digital connector or one 108 pin expansion
connector. Additionally, the PC31 is compatible with the full line of DSP-LINK analog
and digital I/O cards.
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APPENDIX B. ANALOG INTERFEROMETRIC SIGNAL SIMULATOR

The analog interferometric signal simulator built by Dr. David Gardner, is similar
to that described in [Ref 7:Appendix C]. Additional modifications were made to the
circuit and are described in [Ref 19:pp 73-75]. The simulator was built around Analog
Device's AD639 Universal Trigonometric Function Converter (refer to Figure Bl).
Adjustments on the simulator provide for the setting of the static phase angle and output
signal amplitude, however, the drift angle term is not time-varying as it would be in an
actual system. By configuring three simulators together and adjusting the static phase
angle of each, three interferometric waveforms separated by 120° can be generated for any

bias angle.
input AD639 Interferometric Output
Trig
Static Phase :
adjustment Chip

DC Bias voltage
142 degrees/volt

Figure B1 Block diagram of interferometric signal simulator taken from Ref 9
The Analog Devices AD639 Universal Trigonometric Function Converter is conFigured to
produce the sine of its input. A one volt input is equivalent to an input argument of 50°.

The gain of the circuit built by Gardner [Ref 7] was set to 2.85. Thus the static phase
adjustment input equates to, "

2.85x50°/Volt = 142°/Volt, (B.1)

so that, with one simulator adjusted to zero volts static phase output and the other two
static phase outputs adjusted to +0.845 V, three interferometric signals symmetrically
phase shifted 120° relative to each other will be produced.
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As designed, the simulators produced a maximum output of 3.6 V peak to peak.
This was well within the range of allowed for input voltages to the DSP102. However,
they are not able to produce the dc offset voltage which is associated with real
interferometric signals. The simulators were able to generate outputs for input signal
amplitudes of up to 8.0 Volts peak-to-peak (= 2 pi radians). Above 8.0 volts, the
simulators become severely distorted due to saturation in the analog electronics. The
average scale factor for the three interferometric simulators was reported to be 0.933
rad/Volt [Ref 9 p 51]. The average phase noise was reported to be 0.48 + 0.005 prad/V
Hz measured at 1 kHz in a one Hz bandwidth [Ref 19:p 64].
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APPENDIX C. MISCELLANEOUS

This appendix contains the following:

1. Turbo C programs written for this thesis.
TCDEMOD.C

2. MATLARB script files written for this thesis.
PLOTDATM
DEMOD.M
PLOTABC.M
LDTST3.M
LDTST7.M

3. PC31 C programs written for this thesis.
TMSDEMOD.C

4, PC31 Assembly language programs written for this thesis.
TST3.ASM
TST5.ASM
TST7.ASM

61




A. PROGRAM TCDEMOD.C

/**********************************#*****************###****#******

* R O ¥ K X X X ¥ F ¥ ¥

TCDEMOD.C - Test routine written in Turbo C.

This program generates the three channels output from a 3x3
fiber optic interferometer. The 3 channels are then
demodulated using a symmetric demodulation scheme using
integer arithmetic. The output is accumulated in the variable
phase

Written by : LCdr Brenner 09 Feb 1994

last modified : 11 Aug 94

sk ok ok ok ok ok 3k ok skok ok 3k ko ok sk ok ok ook ok ok sk kb ok sk ok ok b koKkok Rk Rk Rk kR ROk KRR R Rk

#include "stdio.h"

#include "math.h"

#define num_samples 1024
#define onethird 1.0/3.0
#define decay 0.999

void main{void);
void gen_signal(void);

void main()

{

extern int A[num_samples];
extern int B[num_samples];
extern int C[num_samples];
long int output[num_samples];
long int denom[num_samples];
long int numer[num_samples];
long int a[num_samples];

long int b{num_samples];

long int c[num_samples];

long int adot[num_samples};
long int bdot[num_samples];
long int cdot[num_samples];
long int a_temp, b_temp, c_temp, numerl, numer2, numer3;
int i, offset;

FILE *fp;

a_temp =0; b_temp =0; ¢_temp =0;
numer] = 0; numer2 = 0; numer3 =0;

offset =0;

fp = fopen("demod.dat", "w+b");
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gen_signal();

for(i = 0; i < num_samples; i++)
{
offset = (int)(onethird*(A[i] + B[i] + C[i]));
a[i] = (A[i] - offset);
bli] = (BIi] - offset);
c[i} = (C[i] - offset);

denom[i] = (a[i]*afi] + b[i]*b[i] + c[i]*c[i]) >> 16;

adot[i] = a[i] - a_temp;

bdot[i] = b[i] - b_temp;

cdot[i] = c[i] - ¢_temp;

numerl = a[i]*(cdot[i] - bdot]i});
numer2 = bfi]*(adot[i] - cdot][i]);
numer3 = c[i]*(bdot[i] - adot[i]);
numer[i] = numerl + numer2 + numer3;

output[i] = (long int)(decay*output[i-1]) + numer([i}/denom][i];

a_temp = a[i]; b_temp = b[i}; ¢_temp = c[i];

3
fwrite(a, sizeof(fong int), num_samples, p);
fwrite(adot, sizeof(long int), num_samples, fp);
fwrite(b, sizeof(long int), num_samples, fp);
fwrite(bdot, sizeof(long int), num_samples, fp);
fwrite(c, sizeof(long int), num_samples, {p);
fwrite(cdot, sizeof(fong int), num_samples, p);
fwrite(denom, sizeof(long int), num_samples, fp);
fwrite(numer, sizeof(long int), num_samples, fp);
fwrite(output, sizeof(long int), num_samples, fp);
fclose(fp);

}

/*

*

* Routine to generate interferemetric waveforms
*

*/

int A[num_samples];

int B[num_samples];

int C[num_samples];

void gen_signal()

{
int i, scale;
float Ac, f, fs, Light_amp, pi;
float theta[num_samples];

pi = 4.0*atan(1.0);
fs =1.0/128.0;
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Ac = pi;
Light_amp = 0.0;
scale = 32000;

for(i = 0; i < num_samples; i++)

{
theta[i] = 2.0*pi*fs*i;
Ali] = (Light_amp + cos(Ac*sin(theta[i]) - pi/6))*scale;
B[i] = (Light_amp + cos(Ac*sin(theta[i]) + pi/2))*scale;
Cl[i] = (Light_amp + cos(Ac*sin(theta[i]) + 7*pi/6))*scale;
}
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B. PROGAM PLOTDAT.M

96***********************************************************
%

% PLOTDAT.M - Plots data generated by the C program DEMOD1.C

%

% Written by: LCdr Brenner 10 Aug 94

%

%***********************************************************

clear all, clc, clf
N =2048;

A = 1d16bit('c:\tc\thesis\demod1.dat',N,0);

B = 1d16bit('c:\tc\thesis\demod1.dat',N,N);

C = 1d16bit('c:\tc\thesis\demod1.dat',N,2*N),
output = 1d32bit('c:\tc\thesis\demod1.dat',N,3*N/2),

L =200,

1=0:L-1;

figure(1)
plot(1,A(1:L),"",1,B(1:L),--",,C(1:L))

figure(2)
subplot(211),plot([0:1999],output(1:2000))
disp(['Max output = ',num2str(max(output)),’ Min output = ' num2str(min(output))])

Nfft = N; fs = 100e3;

w = hanning(Nfft);

[Pxx,fx] = psd(output,Nfft,fs,w,256);

Pxx = Pxx*norm(w)"2/sum(w)"2;
subplot(212),plot(fx/fs,10*log10(Pxx)),grid
%[x,y] = ginput(6); -

%y = 10.My/20);

%THD = sum(y(2:6))/y(1)*100;
%text(10e3,110,['THD = ',num2str(THD),' %'])




C. PROGRAM DEMOD.M

Ok ok sk ok ok ko okl ook ok ok kR ok oR kool KRRk ok ok ok ko kR kR R Rk X

%

% DEMOD.M - this program plots theoretical interferemetric signals

%
%
%
%
%
%

for a three leg interferometer. And then demodulates them using
a symetric demodulation technique.

written by: LCdr Brenner 7 June 94
Last modified : 20 July 94

O/ ¥ kkokokak ok kokok ok koo ok dokok ok ok kb ko kb Rk ok ok okkok ok ok kR ko koo kb ok ok ok

clear all clf clc

N = 1024;
%diary demod]1.txt

%set acoustic amplitude plus noise.

noise = 0;

phase_shift = pi;

Ac = phase_shift*ones(1,N) + noise*randn(1,N);
disp(['optical phase shift = ',num2str(phase_shift),' radians'])

%set sampling frequency f/fs

fs = 100¢3; = 600;

disp(['sampling freq = ',num2str(fs),' Hz'])
disp([‘acoustic frequency =',num2str(f),' Hz'])

%calculate sampled phase angle
theta = (2*pi*f/fs)*[1:N];

%set phase noise term (static phase difference plus drift)
phid_noise = 0.0;
phid = phid_noise*rand(1,N);

%calculate input signal
signal = Ac. *sin(theta + phid);

%set laser amplitude and measurement noise
Dc =0.5/2.75;

samp = 5.0;

sampling_noise = samp.*randn(1,N);

%generate theoretical interferemetric signals

scale = 2715,

A = fix((Dc + cos(signal - pi/6))*scale) + sampling_noise;

B = fix((Dc + cos(signal + pi/2))*scale) + sampling_noise;

C = fix((Dc + cos(signal + 7*pi/6))*scale) + sampling_noise;
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% intialize variables

decay =0.99;

offset] = fix(1/3*(A(1) + B(1) + C(1)));

offset2 = fix(1/3*(A(2) + B(2) + C(2)));

al = fix(A(1) - offsetl); a2 = fix(A(2) - offset2),
bl = fix(B(1) - offsetl); b2 = fix(B(2) - offset2);
cl = fix(C(1) - offsetl); c2 = fix(C(2) - offset2);
denom = fix((al”2 + b172 + c172)/2716);

adot = fix(a2 - al); atemp = al;

bdot = fix(b2 - bl); btemp =bl;

cdot = fix(c2 - ¢1), ctemp = cl;

numer = fix(al*(cdot - bdot) + b1*(adot - cdot) + c1*(bdot - adot));
last_output = numer/denom;

%run algorithm
fork=1:N
offset = fix(1/3*(A(k) + B(k) + C(k)));
a = A(k) - offset;
b = B(k) - offset; %subtract dc from interferometric signals
¢ = C(k) - offset;
denom(k) = fix((a™2 + b2 +c"2)/2716);  Ycalculate factor that accounts for laser power
adot(k) = a - atemp;
bdot(k) =b - btemp; %calcluate derivatives of signals
cdot(k) = ¢ - ctemp;
numerl(k) = fix(a*(cdot(k) - bdot(k)));
numer2(k) = fix(b*(adot(k) - cdot(k)));
numer3(k) = fix(c*(bdot(k) - adot(k)));
numer(k) = fix(numer1(k) + numer2(k) + numer3(k));
output(k) = fix(decay*last_output + numer(k)/denom(k));

atemp = a; btemp = b; ctemp = c; last_output = output(k);
end

figure(1)

L =200;1=0:L-1;

subplot(131),plot(l,A(1:L))

subplot(132),plot(1,B(1:L))

subplot(133),plot(1,C(1:L))

disp(['max A = ‘,num2str(max(A)),' min A = ' num2str(min(A))])
disp(['max B = ',num2str(max(B)),' min B = ! num2str(min(B))])
disp(['max C = *,num2str(max(C)),' min C = * num2str(min(C))])

figure(2)

subplot(311),plot(adot)
disp(['max adot = ',num2str(max(adot)),' min adot = ' num2str(min{adot))])
subplot(312),plot(bdot)
disp(['max bdot = ',num2str(max(bdot)),' min bdot = ' num2str(min(bdot))}])
subplot(313),plot(cdot)
disp(['max cdot = ',num2str(max(cdot)),' min cdot = ' num2str(min(cdot))])
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figure(3)

subplot(311),plot(numerl)

disp(['max numerl =',num2str(max(numerl)),’ min numerl = ', num2str(min(numer1))])

subplot(312),plot(numer2)

disp(['max numer2 = ',num2str(max(numer2)),’ min numer2 = ‘', num2str(min(numer2))])

subplot(3 13),plot(numer3)

disp(['max numer3 = ',num2str(max(numer3)),’ min numer3 = ', num2str(min(numer3))])

figure(4)

subplot(211),plot(numer(1:300))

disp(['max numer ="', num2str(max(numer)),’ min numer= ', num2str(min(numer))])

subplot(212),plot(denom(1:300))

disp(['max denom = ',num2str(max(denom)),' min denom = ',num2str(min(denom))])

figure(5)
subplot(211),plot(output(1:1000))

Nfft = 1024;

w = hanning(Nfft);

[Pxx,fx] = psd(output,Nfft,fs,w,256);

Pxx = Pxx*norm(w)*2/sum(w)"2;
subplot(212),plot(fx/fs,10*log10(Pxx)),grid
[x,y] = ginput(11);

y = 10.7(y/20);

THD = sum(y(2:11))/y(1)*100;
text(0.1,100,['THD = ',num2str(THD),' %')

disp(’
diary off
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D. PROGRAM PLOTABC.M

O/ ¥ 3k sk ke sk ok sk ok sk sk e o 3 3k ok ok o ke sk ok ok sk ke sk ok o ok 3 3 ok o o ok ok sk sk ok sk ok ok ok 3 o ok ok o ok ok ok

%

% PLOTABC.M - Plots test data taken from the PC31.
% This script file assumes that data has been

% taken from the PC31 using TST3.ASM

%

% Written by LCdr Brenner 10 Aug 94

%

96****************************************************

clear all, cIf, clc

Nfft = 4096;

fs = 75757.6;

w = hanning(Nfft);

%a0 = 0.35875; al = 0.48829; a2 = 0.14128; a3 = 0.01 168; n = 0:Nfft-1;
Y%w = a0 - al*cos(2*pi*n/Nfft) + a2*cos(4*pi*n/Nfft) - a3*cos(6*pi*n/Nflt);

a_gnd =1d16bit('a_gnd.dat");
b_gnd = 1d16bit('b_gnd.dat";
¢_gnd = 1d16bit('c_gnd.dat");

afull = 1d16bit("amux600.dat";

bfull = 1d16bit('bmux600.dat');

cfull = 1d16bit('cmux600.dat');

figure(1)

subplot(211),plot(afull(1:1000))

%title(['Data A multiplexed on channel a (sampling freq = ',num2str(fs),' Hz)'])
text(100,3.5¢4,['Max = ',num2str(max(afull)),'Min = ', num2str(min(afull))})
[Paa,fa] = psd(afull(1:Nfft),Nfft,fs,w,256);

Paa = Paa*norm(w)"2/sum(w)"2;

subplot(212),plot(fa(1:1000)/fs, 10*log10(Paa(1:1000)))

%ylabel('Magnitude - dB")

SNR = 10*1og10(max(Paa)/mean(Paa(1000:Nfft/2)));

text(0.025,80,['SNR = ',num2str(SNR),' dB'])

[x.,y] = ginput(11);

y = 10.7(y/20);

THD = sum(y(2:11))/y(1)*100;

text(0.025,50,['THD = ',num2str(THD),' %'])

figure(2)

subplot(211),plot(bfull(1:1000))

%title(['Data B multiplexed on channel a (sampling freq = ',num2str(fs),' Hz)"])
text(100,3.5e4,['Max = ',num2str(max(bfull)),'Min = ', num2str(min(bfull))])
[Pbb,fb] = psd(bfull(1:Nfft),Nfft fs,w,256);

Pbb = Pbb*norm(w)"2/sum(w)"2;

subplot(212),plot(fb(1:1000)/fs,10*log 10(Pbb(1:1000)))

Y%ylabel("Magnitude - dB")

SNR = 10*log10(max(Paa)/mean(Paa( 1000:Nfft/2)));

text(0.025,80,['SNR = ',num2str(SNR),' dB'])
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[x,y] = ginput(11);

y = 10.7(y/20);

THD = sum(y(2:11))/y(1)*100;

text(0.025,50,['THD = ‘,num2str(THD),’ %'

figure(3)

subplot(211),plot(cfull(1:1000))

%title(['Data C on channel b (sampling freq = ' num2str(fs),' Hz)'])
text(100,3.5e4,['Max = * num2str(max(cfull)),Min = ' num2str(min(cfull))])
[Pcc.fc] = psd(cfull(1:Nfft),Nfft,fs,w,256);

Pcc = Pcc*norm(w)*2/sum(w)*2;

subplot(212),plot(fc(1: 1000)/fs,10*10g10(Pcc(1:1000)))
%jylabel('Magnitude - dB")

SNR = 10*log10(max(Paa)/mean(Paa(1000:Nﬁ1/2)));
text(0.025,80,['SNR = ' num2str(SNR),' dB'])

[x.y] = ginput(11);

y = 10.7(y/20);

THD = sum(y(2:11))/y(1)*100;

text(0.025,50,['THD = *,num2str(THD)," %'])

figure(4)

subplot(211),plot(a_gnd(1:500))

%title(['Data A multiplexed on channel a (sampling freq = ' num2str(fs),' Hz)'1)

text(50,15,['Max = ',num2str(max(a _gnd)),' Min = ' num2str(min(a_gnd))])
text(50,-15,['Mean = * num2str(mean(a_gnd))])

[Paa,fa] = psd(a_gnd(l ‘Nfft),Nfft,fs,w,256);

Paa = Paa*norm(w)"2/sum(w)"2;

subplot(212),pIot(fa/fs,10*log10(Paa))

%ylabel('Magnitude - dB')

text(5e3,-10,['Mean = ',numZStr(l0*log10(mean(Paa))),' dB'])

figure(5)

subplot(211),plot(b_gnd(1:500))

o%title(['Data B multiplexed on channel a (sampling freq = ' num2str(fs),' Hz)'])

text(50,15,['Max = * num2str(max(b_gnd)),' Min = ' num2str(min(b_gnd))])
text(50,-15,['Mean = ' num2str(mean(b_gnd))])

[Pbb,fb] = psd(b_gnd(1:Nfft),Nfft,fs,w,256);

Pbb = Pbb*norm(w)"2/sum(w)"2;
subplot(212),plot(fb/fs,10*log10(Pbb)),axis([0 0.5 -60 0])
%ylabel('Magnitude - dB')

text(5e3,-10,['Mean = ' num2str(10*log10(mean(Pbb))),’ dB'D)

figure(6)

subplot(211),plot(c_gnd(1:500))

9%title(['Data C on channel b (sampling freq = ',num2str(fs),' Hz)'l)
text(50,15,['Max = ',num2str(max(c _gnd)),' Min = ' num2str(min(c_gnd))])
text(50,-15,['Mean = ' num2str(mean(b_gnd))])

[Pcc,fc] = psd(c_gnd(1 ‘Nfft),Nfft,fs,w,256);

Pcc = Pec*norm(w)2/sum(w)"2;

subplot(212),plot(fc/fs,10*log10(Pcc))

%jylabel('Magnitude - dB')

text(5e3,-10,['Mean = ' num2str(10*log10(mean(Pcc))),’ dBD)

70




E. PROGRAM LDTST3.M

9%***************************************************************
%

% LDTST3.M loads data from taken from PC31 digital demodulator

% using TST3.asm program.

% Amux, Bmux and Cmux data are loaded and plotted.

%

% written by; LCdr Brenner 29 Aug 94

%
96***************************************************************
clear all, cIf

Nfft = 4096;

fs = 75757.6;

w = hanning(Nfft);
%a0 = 0.35875; al = 0.48829; a2 = 0.14128; a3 = 0.01168; n = 0:Nfft-1;
%w = a0 - al*cos(2*pi*n/Nfit) + a2*cos(4*pi*n/Nfft) - a3*cos(6*pi*n/Nfft),

num = input('Input data number to be loaded ','s");
filenamel = ['b:amux’,num,".dat'];

amux = ld16bit(filenamel),

filename2 = ['b:bmux',num,".dat'];

bmux = 1d16bit(filename2);

filename3 = ['b:cmux’,num,'.dat'];

cmux = Id16bit(filename3);

%plot the data

figure(1)

subplot(211),plot(amux(2:1000))

[Paa,fa} = psd(amux(2:Nfft),Nfft,fs,w,256);

Paa = Paa*norm(w)"2/sum(w)"2;
subplot(212),plot(fa(1:1000)/fs,10*log10(Paa(1:1000)))
SNR = 10*log10(max(Paa)/mean(Paa(100:Nfft/2)));
text(0.025,30,['SNR = ',num2str(SNR),' dB'])

figure(2)

subplot(211),plot(bmux(2:1000))

[Pbb,fb] = psd(bmux(2:Nfft),Nfft,fs,w,256);

Pbb = Pbb*norm(w)"2/sum(w)"2;
subplot(212),plot(fb(1:1000)/fs,10*1og10(Pbb(1:1000))),axis([0 0.25 -50 50])
SNR = 10*log10(max(Pbb)/mean(Pbb(100:Nfft/2)));
text(0.025,30,['SNR =',num2str(SNR),' dB")

figure(3)

subplot(211),plot(cmux(2:1000))

[Pce,fc] = psd(cmux(2: Nfft),Nfft,fs,w,256);

Pcc = Pcc*norm(w)"2/sum(w)”2;
subplot(212),plot(fc(1:1000)/fs,10*log10(Pcc(1:1000)))
SNR = 10*log10(max(Pcc)/mean(Pcc(100:Nfft/2)));
text(0.025,30,['SNR = ',num2str(SNR),' dB'])




F. PROGRAM LDTST7.M

96******************************************************#********
%

% LDTST7.M loads data taken from PC31 digital demodualtor

% using TST7.ASM program. TST7 demodulates the signals

% using floating point math. Denominator, numerator and
% output samples are stored. 4096 points of data are loaded
% by this program.

%

% written by; LCdr Brenner 29 Aug 94

%

96******************#*****************************************##*

clear all, clf, clc

num = input('Input data number to be loaded ','s");
. filenamel = ['denf’,num,".dat'];

denom = 1d32bit(filenamel);

filename2 = ['numf,num,'.dat'];

numer = 1d32bit(filename?2);

filename3 = ['outf,num,".dat'];

output = 1d32bit(filename3);

N = length(output); fs = 75757.6;

%plot the data
figure(1)
L =500;1=0:L-1;

subplot(121),plot(l,denom(L:2*¥L-1))
amp = max(denom)-min(denom);,
disp(['Swing=",num2str(amp)])
subplot(122),plot(l,numer(L.:2*L-1))
amp = max(numer)-min{numer);
disp(['Swing=',num2str(amp)})

figure(2)
subplot(211),plot(output(N-L+1:N)),grid
text(50, max(output),[' Amplitude= ',num2str(max(output)-min(output)),’ pp'D

Nfft = 4096,

w = hanning(Nfft);

[Pxx,fx] = psd(output(N-Nfft:N),Nfft,fs,w,256);

Pxx = Pxx*norm(w)"2/sum(w)"2;
subplot(212),plot(fx(1:1000)/fs,10*log10(Pxx(1:1000))),grid
text(0.05,60,['Freq = ',num2str(find(Pxx == max(Pxx))/Nfft),’ fs'])
[x,y] = ginput(6);

y = 10.7(y/20);,

THD = sum(y(2:6))/y(1)*100;
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text(0.05,80,['THD = ‘,num2str(THD),' %'1)
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G. PROGRAM TMSDEMOD.C

/**************************#************#****#*************#**#***#

TMSdemod.c - 4

This program was written for compilation using the TMS320 optimizing C compiler.
Data presented on MUX channels INO and IN1 and inputB of the DSP102 are sampled
and then asymmetric demoduation is performed using integer arithmatic.

4000 points of output data are accumulated in the vectors phase and denom.

written by LCdr Brenner 10 Mar 1994,
last modified : 01 May 94

* X X * ¥ ¥ * X ¥ *

************************************************************##**#*/

#include "stdio.h" /* constant definitions for PC31 */
#define num_samples 4000 /* number of data samples to take */
#define DECAY 0.99 /* set integrator decay constant */
int main(void);

int denom[num_samples); /* denomimator term */

int output[num_samples]; /* output of algorithm */

main()

{

volatile int* ser_gc = SER_GC,
volatile int* adc = ADC;

volatile int* da0 = DACO;

volatile int* dal = DACI;

volatile int* ser_rd = SER_RD;
volatile int* ser_td = SER_TD;

inti, a, b, ¢, a_temp, b_temp, ¢_temp;
int adot, bdot, cdot, numer, square, start, stop;
a_temp = 0; b_temp =0; c_temp = 0;
denom[0] = 0;

output[0} = 0;

set_ST(get ST() | 0x0800); /* Enable PC31 cache */
enable_interrupts();

timer(2,1000); /* set up 1Khz timebase on channel */
enable clock(); /* 2 of 8254 timer */

*ser_gc = 0x0ebd0040; /* initialize serial communications */
*SER_FSX = 0x00000111; /* with DSP102,202, 32 bit words */
*SER_FSR = 0x00000111; /* chan A MSB, chan B LSB, polled */
*SER_CTL = 0x0000000f; /* operation */

*SER_CNT =0,

*SER_PER = 0;

*MUX _A=0; /* Use Mux A channnel INO, IN1 */
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*ser_td =0;

*da0; /* set all DSP102 DACs to zero */
while((*ser_gc & 2) == 0) /* output voltage state */
*ser_td =0;
*dal;
while((*ser_gc & 2) == 0)
*ser rd; /* dummy reads of serial input port */
*ser_rd,; /* to clear for first conversion */
*adc; /* convert data on Mux channel INO */
*MUX_A=1; /* switch Mux to IN1 prior to next conv */
start = uclock();
for(i = 1; i <= num_samples; i++) /* start of demodulation loop */
{
while((*ser_gc & 1) ==0) /* wait till prev conv complete */
*adc; /* start next conv (data bMux 1) */
*MUX_A=0; /* switch Mux back to INO for data A */
a=*ser_rd >> 16;
while((*ser_gc & 1) ==0) /* wait for conv( 4.8 usec) datab and c */
; /* being sampled */
temp = *ser_rd; /* read conversion data */
b = (temp & Oxffff0000) >> 16;  /* get data b */
¢ = (temp & OxfIif) >> 16; /* get data ¢ */

denom[i] = (a*a + b*b + c*c) >> 16;

adot = a - a_temp; /* calculate derivatives */
bdot =b - b_temp;

cdot =c - ¢_temp;

numer = a*(cdot - bdot) + b*(adot - cdot) + c*(bdot - adot);

output[i] = DECAY *output[i-1] + numer/denom([i];
a_temp=a;b_temp=>b; c_temp =c;

3

stop = uclock();

printf("\nstart time = %i", start);

printf("\nstop time = %i", stop);

printf("\ntime taken = %i", (stop - start) );




H. PROGRAM TST3.ASM

title "Data sampling using Mux"
o 3 3 3 ok ok ok ok ok ok 3 ke ok ok o ok ok ok ok ok ok Kk ok ko KOK oK o ok ok ok 3k ok 3 o ok ok o R ok ok ok ok kb ok

*
* TST3.ASM - Routine to take data from DSP102 at Max

* sampling rate using Multiplexed input on input A of DSP102.
* Data is stored in vectors a_dat, b_dat and c_dat.

* fs=75,757.6 Hz

*

sk 3k 3k ok 3k ok 3k oK ok 3 3k ok ok ok ke ok ok k3 ok ok ok 3k ok ok ok 3 3k ok ok ko ok ok ko ok o ok ok 3k ok ok koK ok ok ok
*

* Reset and interrupt vector table specification. This
* arrangement assumes that during linking, the following
* text segment will be placed to start at the origin of the

* vector table.
*

.global reset,start
.global rint0,int06,XRPT

.sect "MC_vec" ; Named section
reset .word  start ; Hardware reset vector
*
word XRPT ; EIO (01)
word  XRPT ; EI1 (02)
word XRPT ; EI2 (03)
word XRPT ; EI3 (04)
.word XRPT ; Serial port 0 XMT (05)
rint0 .word int06 ; Serial port 0 RCV (06)
.word  XRPT ; Serial port 1 XMT 07)
.word XRPT ; Serial port 1 RCV (08)
.word  XRPT ; Timer 0 (09)
word  XRPT ; Timer 1 (10)
word  XRPT ; DMA (1D
.space 20 ; Reserved
.space 32 ; Space for the 32 traps (32-63)
*

* Entry point for TST3 routine

* Initialization routine
*

>

; constants for intialization routines
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.data

base .word 00808000h ; base address of onchip peripherals

ser_ini .word 0Oebc0040h . serial data bus initialization word

ser_gc .word 00808040h ; base address of serial port 0

ser rd .word 0080804ch ; address of serial port receive data

stack .word 00809810h ; address of start of stack

blk0 word  00809800h ; start address of internal RAM block 0

blkl .word 00809¢c00h ; start address of internal RAM block 1
text

; Reconfigure Primary Bus Control Register for PC31

start LDI @base,ARO ; Load ARO with base addr
LDI 1090h,R1 ; Init PBCR for SWW=2,
STI R1,*+AR0(64h) ; and WTCNT =4.
; intilaize serial port 0
LDI @ser_ini,RO ; setup for serial port transfers
STI RO,*+ARO0(40h) ; with DSP102 at 8.33333 Mhz
LDI 111h,R0 ; 32 bit words the first 16 MSB bits
STI RO,*+AR0(42h) ; are data A and the 16 LSB bits arc B
STI RO, *+AR0(43h)
LDI 0fh,RO
STI RO, *+AR0O(44h)
LDI 0,RO

STI - RO,*+AR0(45h)
STI RO,*+ARO0(46h)

; zero internal memory

LDI @blk0,ARO ; ARO points to RAM block 0
LDI @blk1,AR1 ; AR1 points to RAM block 1
LDI 0,RO : load intialization value 00
RPTS 1023 ; repeat 1023 times
STI RO,*ARO++(1) ; zero RAM block 0
[ STI RO, *AR1++(1) : zero RAM block 1
. intialize and start internal timer 1
LDI @base,ARO ; base address of on-chip peripherals
STI RO, *+ARO0(30h) ; stop timer 1
LDI 55,R0 ; setup count for 151,515.2 Hz
STI RO, *+ARO(38h)
LDI 2¢1h,RO ; setup for 1 cycle pluse
STI RO,*+AR0(30h) ; and start timer 1
; intialize stack pointer
LDI @stack,SP ; intialize stack pointer
LDI @MUX,ARO ; load address of Multiplexer
LDI @Mux,AR2 ; load address of mux shadow register
LDI O,RO
STI RO,*ARO ; set mux channel INO
I STI RO,*AR2 ; update mux shadow reg
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; clear first two samples of ADC before starting loop
LDI @ser_rd,AR1 ; load address of serial port0 receive
waitl  TSTB 20h,IF ; wait for serial port interrupt

BZ waitl
LDI 1L,LR2 ;
STI R2,*AR0 ; change mux to channel IN1
LDI *AR1,R1 ; dummy read of serial data
STI Rl,@dummyl ; store at dummy1
XOR IFJF ; clear interrupt flag
wait2 TSTB 20h,IF ; wait for next interrupt
BZ wait2

STI RO,*ARO

LDI  *ARO,RI

STI R1,@dummy2
XOR IF,IF

; change mux back to channel INO
; dummy read
; store at dummy?2
; clear interrupt flag
; load registers for the interrupt service routine
LDP O ; load data page to point to bss section
LDI @A _dat,AR3 ; AR3 points to data A
LDI @B_dat,AR4 ; AR4 points to data B
LDI @C_dat,AR5 ; ARS points to data C
LDI @MASK,RC ; RC has mask value
LDI 0,IRO ; zero data index pointer

LDl 20h,IE
LDI 2800h,ST

; enable serial port0 receive interrupt
; and enable global interrupts and cache
; go into infinite loop
loop:
B loop
; Interrupt service routine to read ADC conversion data
int06: IACK *AR2 ; interrupt acknowledge signal

LDI *AR1,RI1 ; read data from serial port
LDI *AR2 RO ; check if mux is set to channel INO
BNZ  int06a
ASH -16,Rl ; store upper 16 MSBs as data A
BD int06b ; return when read
STI R1,*+AR3(IR0) ; and store it away
LDI 1,RO ;
STI RO,*ARO ; change mux channel to INO
Il STI RO,*AR2 ; update shadow register
int06a LDI 0,R2
STI R2,*ARO ; change mux to channel IN1
Il STI R2,*AR2 ; update mux shadow register
LDI RIR2
ASH -16,R1 ; shift 16 MSBs to the right
STI R1,*+AR4(IR0) ; store B data
AND RCR2 ; mask off lower 16 LSB
ASH 16,R2 ; Totate 16 bits left to set sign
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ASH -16R2 ; rotate back preserving sign
STI R2,*+AR5(IR0) ; store C data
ADDI 1,IRO ; increment data pointer
CMPI @SIZE,IRO ; at end of data buffer yet?
LDIZ 0,IR0O ; if so set index pointer to start
int06b: JACK *AR2 ; interrupt acknowledge
RETI
; Interrupt service routine for unspecified interrupts
XRPT:
RETI
; program data definition
.globl size
.globl ab,c
.bss a,2000h
.bss b,2000h
bss ¢,2000h
.globl mux
.bss mux,1
.globl  dummyl
.bss dummy1,1
.globl  dummy2
Jbss dummy?2,1
.data
MASK .word Offffh
SIZE .word 2000h
A dat .word a
B dat .word b
C dat .word c
Mux .word mux
MUX .word Offfa80h
.end
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I. PROGRAM TSTS.ASM

title  "Multiplexed demodulator using integer math”
ok o ok 3 ok 3k ok ok ok e 3k ok 3k ok ke 3 ok o ok ok 2k e skl sk sk sk ik ok 3k ok ok ok e ok ok ok ke ok e ok ks ok ok ok ok ok o

TST5.ASM - Digital demodulation algortihm using integer operations.
Input data is sampled at Max rate using Multiplexed inputs
on input A of the DSP102. 8192 points of Denominator
numerator and output data are stored.

* * X ¥ X *

a3k ko ok 3k ok ok o ok 3k ok ok ok ok sk ok ok e ok ok ok ko 3k ok o o 3 ok ok o ok 3k o ok ok ok 3k ok ok ok ok o ok ok ok kK

* Reset and interrupt vector table specification. This

* arrangement assumes that during linking, the following
text segment will be placed to start at the origin of the
vector table.

* ¥ *

.global reset,start
.global rint0,int06,XRPT
ref DIV_IDIV U

.sect "MC_vec" ; Named section

reset .word start ; Hardware reset vector

*
.word XRPT ; EIO (9]
.word  XRPT ; Ell 02)
word  XRPT ; EI2 (03)
word XRPT ; EI3 04)
.word XRPT ; Serial port 0 XMT (05)

rint0  .word int06 ; Serial port 0 RCV (06)
word  XRPT ; Serial port 1 XMT 07
word  XRPT ; Serial port 1 RCV (08)
word XRPT ; Timer 0 09)
.word  XRPT ; Timer 1 (10)
word  XRPT ; DMA (1
.space 20 ; Reserved
.space 32 ; Space for the 32 traps (32-63)

; Entry point for TSTS5 routine

; Initialization

; constants for intialization routines
.data

base .word  00808000h
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ser_ini .word 0Oebc0040h
ser_gc .word 00808040h
ser rd .word 0080804ch
stack .word 00809810h
blk0O  .word 00809800h
blk1 .word  00809¢c00h

text

; serial data bus initialization word
; base address of serial port 0

; address of received data

; address of start of stack

; start address of internal RAM block 0
; start address of internal RAM block 1

: Reconfigure Primary Bus Control Register for PC31

’

start  LDI @base,ARO
LDI 1090h,R1
STI R1,*+AR0(64h)
; intilaize serial port 0
LDI @ser_ini,RO
STI RO,*+ARO0(40h)
LDI 111h,RO
STI RO, *+AR0(42h)
STI RO, *+ARO0(43h)

LDI 0fh,RO
STI RO, *+AR0(44h)
LDI 0,RO

STI RO, *+AR0(45h)

STI RO, *+AR0(46h)
; zero internal memory

LDI @blk0,ARO

LDI @blk1,AR1

LDl 0,RO

RPTS 1023

STI RO,*ARO++(1)
i STI RO, *AR1++(1)
; intialize internal timer 1

LDI @base,ARO

STI RO,*+AR0(30h)

LDI  60,R0
STI  RO,*+ARO(38h)
LDI  2c1hRO

STI  RO,*+ARO(30h)

>

; intialize stack pointer and multiple

LDI @stack,SP

LDI  @MUX,ARO
LDI 0RO
STI  RO,*ARO

STI RO,@mux

; Load ARO with base addr
; Init PBCR for SWW=2,
; and WTCNT =4.

; setup for serial port transfers
; with DSP102 at 8.33333 Mhz
; 32 bit words the first 16 MSB bits

; are data A and the 16 LSB bits arc B

; ARO points to RAM block 0
; AR1 points to RAM block 1
; load intialization value 00
; repeat 1023 times
; zero RAM block 0
; zero RAM block 1

; base address of peripherals
; stop timer 1
; setup count for 151.5 Khz

; setup for 1 cycle pluse
; and start timer 1

; intialize stack pointer

b4

; set multiplexer to channel INO
; update mux shadow register

: Clear first two samples from ADC and get initial samples »
- for A,B and C to calculate initial first derivatives
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waitl

wait2

wait3

wait4

wait5

wait6

LDI
LDI
TSTB
BZ
LDI
TSTB
BZ
LDI
TSTB
BZ
LDI
STI
ASH
STI
TSTB
BZ
LDI
LDI
STI
LDI
ASH
LDI
STI
AND
ASH
ASH
STI
TSTB
BZ
LDI
STI
ASH
STI
TSTB
BZ
LDI
LDI
STI
LDI
ASH
STI

ASH
ASH
STI
LDI
SUBI
STI
STI
SUBI

@ser_gc,AR1
1,RO

RO,*AR1

waitl
*+AR1(0ch),R1
RO,*AR1

wait2
*+AR1(0ch),R1
RO,*AR1

wait3
*+AR1(0ch),R1
RO,*ARO
-16,R1
R1l,@aprev
RO,*AR1

wait4
*+AR1(0ch),R1
0,R3

R3,*ARO
R1,R2

-16,R1

R1,R4
R1,@bprev
Offfth,R2

16,R2

-16 R2
R2,@cprev
RO,*AR1

wait5
*+AR1(0ch),R1
RO,*ARO
-16,R1
R1,@asave
RO,*AR1

wait6
*+AR1(0ch),RO
0,R2

R2,*AR0O
RO,R2

-16,R2
R2,@bsave
Offfth,RO

16,RO

-16,R0
RO,@csave
@Prev,AR7
*AR7,R1,R3
R3,@adot
R1,*AR7++
*AR7,R2,R4

; base address of serial port 0

; wait for a data conversion

; perform 2 dummy reads and then get
; initialization data

: wait for next conversion

; dummy read of data
; wait for another conversion

; read data from serial port 0

; change multiplexer to channel IN1

; get upper 16 MSBs

; store as previous sample for derivative
; wait for next conversion

i

; switch multiplexer back to INO
; save data temporarily
; get upper 16 MSBs

; store B sample for derivative calculation
; mask off lower 16 LSBs

; preserve sign of result

; store C sample for previous value

; wait for next conversion

; read data

; change mux to channel IN1

; store A data in R1

; store A at asave

; wait for next conversion

; switch mux back to INO

;dataBin R2

; store B data at bsave

; mask off C data

; shift left 16 bits to set sign

; renormalize data, data C in RO

; save data C at csave

; base address of previous data samples
; adot = (asave - aprev) adot in R3
; store adot

; update aprev

; bdot = (bsave - bprev) bdot in R4
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STI
STI
SUBI
STI
STI
MPYI
MPYI
MPYI
ADDI
ADDI
ASH
LDI
STI
SUBI
MPYI
ASH
SUBI
MPY1
ASH
SUBI
MPYI
ASH
ADDI
ADDI
LDI
STI
CALL
LDI
STI
STI

R4,@bdot

R2*ART7++

*AR7,RO,RS
RS5,@cdot
RO,*AR7
R1R1

R2,R2

RO,RO

RO,R2

R2,R1

-16,R1
@Denom,AR2
R1,*AR2
R3,R4,R2
R2,*AR7--R2
-1,R2
R5,R3,R6
R6,*AR7--R6
-1,R6
R4,R5,R0O
RO,*AR7,RO
-1,R0

R2,R6

R6,RO
@Numer,AR2
RO,*AR2
DIV_1
@Output,AR2
RO,@last
RO,*AR2

; store bdot

; update bprev

; cdot = (csave - cprev) cdot in RS
; store cdot

; update cprev

; square A data

; square B data

; square C data

; CM2+B™2

: C*2 +B"2 + A2 denominR1
; scale denominator by 65536

; store denominator

; (bdot - abot) save in R2

: numer3 = ¢*(bdot - adot) in R2
; divide numer3 by 2

; (adot - cdot) save in R6

: numer2 = b*(adot - cdot) in R6
; divide numer2 by 2

; (cdot - bdot) save in RO

: numer] = a*(cdot - bdot) in RO
; divide numerl by 2

; numer2 + numer3

: numer=numer1+numer2+numer3 in RO
: base address of numerator data
; store numerator data

: Divide RO/R1

: load base address of output

; initialize last output value

: store at first output value

: load registers for the interrupt service routine

LDP
LDI
LDI
LDI
LDI
LDI
LDI
LDI
LDI

LDI
LDI

0
@MUX,ARO
@ser_rd,AR1
@Mux,AR2
@Denom,AR3
@Numer,AR4
@Output, AR5

@MASK,BK
1IRO

20h,1IE
2800h,ST

; go into infinite loop

loop:
B

: serial port 0 interrupt serive routine

int06: LDI

loop

2800h,ST

; load data page to point to bss section
; ARO has address of multiplexer

: AR1 has address of serial read data

: AR2 has address of mux shadow reg
; AR3 points to denominator data

; AR4 points to numerator data

; AR5 points to output data

; BK has mask value

; zero data index pointer

; enable serial port0 receive interrupt
- and enable global interrupts and cache

; reenable interrupts
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I
int06a

LDI  *ARLRS
LDI *AR2,R7
BNZ  int06a

ASH -16,RS

BD int06b

STI RS,@asave
LDI 1L,R7

STI R7,*ARO
STI R7,*AR2
LDI ORI

STI R1,*ARO
STI R1,*AR2
LDI  RSRI

ASH -16,R1

LDI  R1,R4
MPYI RILRI

AND BK,RS,R2
ASH 16,R2

ASH -16,R2

LDI R2R5
MPYI R2R2

LDI @asave,R3
LDI R3,R6
MPYI R3,R3

ADDI R3,R1

ADD] R2RI1

ASH -16RI

STI R1,*+AR3(IR0)
LDI @Prev,AR7
SUBI *AR7,R6,RO0
STI R6,*AR7++
SUBI *AR7,R4,R2
STI R4, *ART++
SUBI *AR7,R5R3
STI R5,*AR7
SUBI RO,R2,R4
MPYI R4,*AR7--R4
ASH -1,R4

SUBI R3,RO,R5
MPYI RS5,*AR7--R5
ASH -1RS5

SUBI R2,R3,R6
MPYI R6,*AR7,R6
ASH -1R6

ADDI R5R6
ADDI R6,R4,RO
LDI @Numer,AR4
STI  RO,*+AR4(IR0)
CALL DIV_I
FLOAT RO

LDI  @lastR1

; read data from serial port 0
; check mux shadow reg

; mask off LSB 16 bits

; store A data at asave

; change mux to INO

; update mux shadow reg

; change mux to IN1

; update mux shadow register

»

; save data B in R4

; save BA2 inR1

; mask off C data

; shift left 16 bits to set sign

; renormalize data

; save data C in RS

; save ¢2 in R2

; Testore data A

; save data A in R6

; save a2 in R3

; (@2 +b72)

1 (@2 +b"2 +¢M2)

; divide denominator by 2716

; store and keep denominator in R1
; base address of previous data samples
; adot = (asave - aprev) adot in RO
; update aprev

; bdot = (bsave - bprev) bdot in R2
; update bprev

; cdot = (csave - cprev) cdot in R3
; update cprev

; (bdot - abot) save in R4

; numer3 = c*(bdot - adot) in R4

; divide numer1 by 2

; (adot - cdot) save in RS

; numer2 = b*(adot - cdot) in RS

; divide numer2 by 2

; (cdot - bdot) save in R6

; numerl = a*(cdot - bdot) in R6

; divide numer3 by 2

; humer2 + numer3

; numer=numerl+numer2+numer3 in RO
; base address of numerator data

; store numerator data

; Divide RO/R1

; convert to floating point

; load previous output
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FLOAT R1 ; convert to floating point

MPYF @DECAY,R1 ; Multiply decay*last output

ADDF RI1,RO

FIX RO,R2

LDI  @Output,ARS ; get pointer to output data

STI R2,*+AR5(IR0) ; store output

STI R2,@last ; update last output value

ADDI 1,IR0 ; increment data pointer

CMPI @SIZE,IRO ; at end of data buffer yet?

LDIZ O1IE ; if so disable interrupts
int06b:

RETI

; Interrupt service routine for unspecified interrupts

XRPT:
RETI

; system data definitions
.globl denom
.bss denom,2000h
.globl numer
Jbss numer,2000h
.globl  output
.bss output,2000h
.globl  asave,bsave,csave
.bss asave, 1
.bss bsave, 1
.bss csave,1
.globl  aprev
.bss aprev, 1
.globl  bprev
.bss bprev,1
.globl  cprev
.bss cprev,1

.globl  last
Jbss last,1
.globl mux

Jbss mux, 1
.globl  adot,bdot,cdot

.Jbss adot,1
.bss bdot,1
Jbss cdot, 1
.data

MASK .word Offfth
DECAY .float 9.9¢-1
SIZE .word 2000h
Denom .word denom
Numer .word numer
Output .word output
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MUX
Mux
Prev
Save

.word
.word
.word
.word
.end

0fffa80h

mux

aprev
asave
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J. PROGRAM TST7.ASM

title  "Multiplexed demodulator using floating point”
s e 3k sk ok ok ok 3 ok 3 ok 5k ok o 3k o ok ok 2 2k ok o 3 ok e o ok ok ok 3 o o e e ke sk o e e 3 o e ok e ok o o o ok e ke ke ok o ok o ke ok ok

* TST7.ASM - Demodulation routine taking data from DSP102

* at Max sampling rate using Multiplexed inputs. Demodulation

* is done using floating point operations. 8192 (decimal) points of the
* ‘denominator, numerator and output signals are computed and stored.
*

ke sk ok ok ok o ok ok ok ok o 3 ok ok ok ok o o o e ok e ok ok o o o ko sk ok s ok sk ok o ok e sk ok 3 ok sk sk o ok ok ok ok ok ok ok ok ok

* Reset and interrupt vector table specification. This

* arrangement assumes that during linking, the following
* text segment will be placed to start at the origin of the

* vector table.
*

.global reset,start
.global rint0,int06,XRPT

ref DIV F
.sect "MC_vec" ; Named section

reset .word start ; Hardware reset vector

*
word  XRPT ; EI0 01)
word XRPT ; EIl (02)
word XRPT ; EI2 (03)
word  XRPT ; EI3 04)
word XRPT ; Serial port 0 XMT (05)

rint0  word  int06 ; Serial port 0 RCV (06)
word  XRPT ; Serial port 1 XMT ©7)
word XRPT ; Serial port 1 RCV (08)
word  XRPT ; Timer O (09)
.word XRPT ; Timer 1 (10)
word XRPT ; DMA (11)
.space 20 ; Reserved
.space 32 ; Space for the 32 traps (32-63)

; Entry point for TST7 routine
; Initialization
. constants for intialization routines
.data
base .word 00808000h "~ ; base address of onboard peripherals
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ser_ini .word 0ebc0040h
ser_gc .word 00808040h
ser_rd .word 0080804ch
stack .word 00809810h
blk0  .word 00809800h
blk1 .word  00809c00h

ext

; serial data bus initialization word
; base address of serial port 0

; address of received data

; address of start of stack

; start address of internal RAM block 0
; start address of internal RAM block 1

; Reconfigure Primary Bus Control Register for PC31

start  LDI @base,ARO
LDl 1090h, R1
STI R1,*+AR0(64h)
; intilaize serial port 0
LDI  @ser_ini,RO
STI RO,*+ARO0(40h)
LDI 111h,RO
STI RO,*+AR0(42h)
STI RO,*+AR0(43h)

LDl  OfhRO
STI  RO,*+ARO(44h)
LDI  OR0

STI RO,*+ARO0O(45h)

STI RO,*+ARO(46h)
; zero internal memory

LDI @blk0,ARO

LDI @blk1,AR1

LDI 0,RO

RPTS 1023

STI RO, *ARO++(1)
JI STI RO, *ARI1++(1)
; intialize internal timer 1

LDI @base,ARO

STI RO,*+ARO(30h)

LDI  55R0
STI  RO,*+AR0(38h)
LDI  2c1hRO

STI RO, *+AR0(30h)

k4

; intialize stack pointer and multiplexer

LDI @stack,SP
LDI @MUX,AR2
LDI  ORO

STI RO,*AR2
STI RO,@mux

: Load ARO with base addr
: Init PBCR for SWW=2,
; and WTCNT =4,

; setup for serial port transfers
; with DSP102 at 8.33333 Mhz
: 32 bit words the first 16 MSB bits

; are data A and the 16 LSB bits are B

; ARO points to RAM block 0
; AR1 points to RAM block 1
; load intialization value 00

; repeat 1023 times

; zero RAM block 0

; zero RAM block 1

; base address of peripherals
; stop timer 1
; setup count for 151,515.2 Hz

; setup for 1 cycle pluse
; and start timer 1

; intialize stack pointer
; set multiplexer to channel INO
; update mux shadow register

; Clear first two samples from ADC and get values to
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; initialize first couputations

waitl
wait2

wait3

wait4

wait5

wait6

LDI  @ser_gc,ARI

LDI 1,RO

TSTB RO,*AR1

BZ waitl

LDI *+AR1(0ch),R1
TSTB RO,*AR1

BZ wait2

LDI  *+ARI(0ch),R1
TSTB RO,*AR1

BZ wait3

LDI *+AR1(0ch),R1
STI RO,*AR2

ASH -16,R1

FLOAT R1

STF  Rl,@aprev
TSTB RO,*AR1

BZ wait4

LDI  *+ARI(Och),R1
LDI O,R3

STI R3,*AR2
LDI Rl1,R2
ASH -16,R1
FLOAT R1

STF  Rl,@bprev
AND  Offffh,R2
ASH 16,R2

ASH -16,R2
FLOAT R2

STF  R2,@cprev
TSTB RO,*ARI
BZ wait5

LDI *+AR1(0ch),R1
STI RO,*AR2

ASH -16,Rl
FLOAT R1
TSTB RO,*AR1
BZ waité
LDI *+AR1(0ch),RO
LDI 0,R2

STI R2,*AR2
LDI ROR2
ASH -16R2
FLOAT R2

AND  Offffh,RO
ASH 16,RO
ASH -16,R0
FLOAT RO

LDI  @Prev,AR7
SUBF *AR7,R1,R3

; base address of serial port O

; wait for a data conversion

; perform 2 dummy reads and then get
; initialization data

; wait for next conversion

; dummy read of data
; wait for another conversion

; read data from serial port 0
; change multiplexer to channel IN1
; get upper 16 MSBs

; store as previous sample for derivative
; wait for next conversion

>

; switch multiplexer back to INO

; save data temporarily

; get upper 16 MSBs

; convert to floating pt

; store B sample for derivative calculation
; mask off lower 16 LSBs

; preserve sign of result

; convert ot floating pt

; store C sample for previous value

; wait for next conversion

; read data

; change mux to channel IN1
; store A data in R1

; convert data to floating pt

; wait for next conversion

; switch mux back to INO

; dataBin R2

; convert data B to floating pt

; mask off C data

; shift left 16 bits to set sign

; renormalize data, data C in RO

; convert data C to floating pt

; base address of previous data samples
; adot = (asave - aprev) adot in R3
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STF R1,*AR7++
SUBF *AR7,R2,R4
STF R2,*AR7++
SUBF *AR7,R0,R5
STF  RO,*AR7
MPYF RI1,R1

MPYF R2,R2

MPYF RO,RO

ADDF RO,R2

ADDF R2RI1

SUBF R3,R4,R2
MPYF R2,*AR7--R2
SUBF R5,R3,R6
MPYF Ré6,*AR7--R6
SUBF R4,R5,R0
MPYF RO,*AR7.RO
ADDF R2.R6

ADDF R6,RO

CALL DIV F

STF  RO,@last

LDI @Output,AR2
MPYF @SCALE,RO
FIX RO

STI RO,*AR2

’

; update aprev

; bdot = (bsave - bprev) bdot in R4

; update bprev

; cdot = (csave - cprev) cdot in R5

; update cprev
; square A data
; square B data
; square C data
; C*2+B"2

; CA2 + B"2 + A*2 denom in R1
; (bdot - abot) save in R2
; numer3 = c*(bdot - adot) in R2
; (adot - cdot) save in R6
; numer2 = b*(adot - cdot) in R6
; (cdot - bdot) save in RO
: numerl = a*(cdot - bdot) in RO

; numer2 + numer3

: numer=numer 1 +numer2+numer3 in RO

; Divide RO/R1

; initialize last output value

; load base address of output

; scale output before conversion to int
; convert output to integer

; store at first output value

; load registers for the interrupt service routine

LDP 0

LDI  @MUX,ARO
LDI @ser_rd,AR1
LDI @Mux,AR2
LDI  @Output,AR3
LDI @MASK,BK
LDI LIRO

LDI 20h,IE
LDI 2800h,ST

; go into infinite loop

loop:

B loop
; serial port O interrupt serive routine
int06: LDI 2800h,ST

LDI *ARL,RS

LDI *AR2 R7

BNZ  int06a
ASH -16,RS
FLOAT RS,R7
BD int06b

; load data page to point to bss section
; ARO has address of multiplexer

; AR1 has address of serial read data

; AR2 has address of mux shadow reg
; AR5 points to output data

; BK has mask value

; zero data index pointer

; enable serial port0 receive interrupt
; and enable global interrupts and cache

; reenable interrupts

; read data from serial port 0

; check mux shadow reg

: mask off LSB 16 bits
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STF  R7,@asave : store A data at asave

LDI 1,R7 :
STI R7,*AR0O ; change mux to INO
Il STI R7,*AR2 ; update mux shadow reg
int06a LDI 0,R1 ;
STI R1,*AR0O ; change mux to IN1
f STI R1,*AR2 ; update mux shadow register
LDI RS,R1 ;
ASH -16,R1 ;
FLOAT R1
LDF RLR4 ; save data B in R4
MPYF RI1,R1 ; save BA2 in R1
AND BK,RSR2 ; mask off C data
ASH . 16R2 ; shift left 16 bits to set sign
ASH -16,R2 ; renormalize data
FLOAT R2
LDF R2RS ; save data Cin RS
MPYF R2R2 ;save ¢2 in R2
LDF @asave,R3 ; Testore data A
LDF R3R6 : save data A in R6
MPYF R3,R3 ; save a2 in R3
ADDF R3,R1 ; (@2 +b72)
ADDF R2RI1 1 (@2 +b"2 +¢M2) ,
LDI @Prev,AR7 : base address of previous data samples
SUBF *AR7,R6,RO ; adot = (asave - aprev) adot in RO
STF R6,*AR7++ ; update aprev
SUBF *AR7R4R2 < bdot = (bsave - bprev) bdot in R2
STF R4, *AR7++ ; update bprev
SUBF *AR7,R5R3 ; cdot = (csave - cprev) cdot in R3
STF  R5,*AR7 ; update cprev
SUBF RO,R2R4 ; (bdot - abot) save in R4
MPYF R4,*AR7--R4 - numer3 = c*(bdot - adot) in R4
SUBF R3,RO,R5 ; (adot - cdot) save in RS
MPYF RS5,*AR7--R5 ; numer2 = b*(adot - cdot) in RS
SUBF R2,R3,R6 : (cdot - bdot) save in R6
MPYF R6,*AR7,R6 . numerl = a*(cdot - bdot) in R6
ADDF R5,R6 : numer2 + numer3
ADDF R6,R4,RO : numer=numerl+numer2+numer3 in RO
CALL DIV F ; Divide RO/R1
LDF @last,R1 ; load previous output
MPYF @DECAY,R1 ; Multiply decay*last output
ADDF RI1,RO :
STF  RO,@last ; update last output sample
MPYF @SCALE,RO ; scale output for integer value
FIX RO ; convert to integer
STI RO, *+AR3(IR0) ; store integer output
ADDI LIRO ; increment data pointer
CMPI @SIZE,IRO ; at end of data buffer yet?
LDIZ OIE ; if so disable interrupts
int06b:
RETI
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; Interrupt service routine for unspecified interrupts

XRPT:
RETI

; system data definitions

.globl
.bss
.globl
bss
.globl
.bss
.globl
.bss
.globl
.bss
.globl
.bss
.globl
.bss
.globl
.bss
.globl
bss

.data
MASK .word
DECAY .float
SIZE  .word
SCALE .float
Denom .word
Numer .word
Output  word
MUX .word
Mux .word
Prev .word
Save  .word

.end

denom
denom,2000h
numer
numer,2000h
output
output,2000h
asave

asave,1

aprev
aprev,1

bprev
bprev,1

cprev

cprev,1

last

last, 1

mux

mux,1

Offfth
9.9¢-1
2000h
30000.0
denom
numer
output
0fffa80h
mux
prev
save
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